3,404 research outputs found

    Fermi energy dependence of linewidth enhancement factor of GaAlAs buried heterostructure lasers

    Get PDF
    The linewidth enhancement factor alpha is measured in a number of GaAlAs lasers with different internal losses. It is found that alpha decreases monotonically with the increase of the loss (Fermi energy level) in agreement with the theoretical prediction. On the basis of these results the design of cavity length and mirror reflection in order to reduce the spectral linewidth of the laser output is discussed

    Spontaneous two photon emission from a single quantum dot

    Full text link
    Spontaneous two photon emission from a solid-state single quantum emitter is observed. We investigated photoluminescence from the neutral biexciton in a single semiconductor quantum dot coupled with a high Q photonic crystal nanocavity. When the cavity is resonant to the half energy of the biexciton, the strong vacuum field in the cavity inspires the biexciton to simultaneously emit two photons into the mode, resulting in clear emission enhancement of the mode. Meanwhile, suppression was observed of other single photon emission from the biexciton, as the two photon emission process becomes faster than the others at the resonance.Comment: 13 pages, 4 figure

    Reduction of the spectral linewidth of semiconductor lasers with quantum wire effects—Spectral properties of GaAlAs double heterostructure lasers in high magnetic fields

    Get PDF
    The spectral linewidth of a GaAlAs double heterostructure laser placed in a high magnetic field is measured at 190 K. It is found that the power-dependent spectral linewidth is reduced by a factor of 0.6 in a magnetic field of 19 T. This reduction is believed to result mainly from the reduction of the linewidth enhancement factor alpha due to a quasi-one-dimensional electronic system formed by the high magnetic field (i.e., by quantum wire effects)

    Enhanced modulation bandwidth of GaAlAs double heterostructure lasers in high magnetic fields: Dynamic response with quantum wire effects

    Get PDF
    The modulation bandwidth of GaAlAs double heterostructure (DH) lasers in high magnetic fields is measured. We found that the modulation bandwidth is enhanced by 1.4Ă— with a magnetic field of 20 T. This improvement is believed to result from the increase of the differential gain due to two-dimensional carrier confinement effects in the high magnetic field (quantum wire effects). A comparison of the experimental results with a theoretical analysis indicates that the intraband relaxation time tauin of the measured DH laser in the range of 0.1 to 0.2 ps
    • …
    corecore