3 research outputs found

    Human Lupus Plasma Pro-Atherogenic Effects on Cultured Macrophages Are Not Mitigated by Statin Therapy: A Mechanistic LAPS Substudy

    No full text
    Background and Objectives: Atherosclerotic cardiovascular disease (CVD) remains a major cause of morbidity and mortality in persons with systemic lupus erythematosus (SLE, lupus). Atherosclerosis, which involves interplay between cholesterol metabolism and cellular inflammatory pathways, is primarily treated with statins since statins have lipid-lowering and anti-inflammatory properties. The Lupus Atherosclerosis Prevention Study (LAPS) was designed to investigate the efficacy of statins against CVD in SLE patients. LAPS demonstrated that 2 years of atorvastatin administration did not reduce atherosclerosis progression in lupus patients. In this LAPs substudy, we use cultured macrophages to explore the atherogenic properties of plasma from LAPS subjects to explain the mechanistic rationale for the inability of statins to reduce CVD in lupus. Materials and Methods: THP-1 differentiated macrophages were treated for 18 h with 10% SLE patient plasma obtained pre- and post-atorvastatin therapy or placebo. Gene expression of the following cholesterol transport genes was measured by qRT-PCR. For efflux—ATP binding cassette transporter (ABC)A1 and ABCG1, 27-hydroxylase, peroxisome proliferator-activated receptor (PPAR)γ, and liver X receptor (LXR)α; and for influx—cluster of differentiation 36 (CD36) and scavenger receptor (ScR)A1. Results: Macrophages exposed to plasma from both statin-treated and placebo-treated groups showed a significant decrease in cholesterol efflux proteins ATP binding cassette (ABC) transporters A1 and ABCG1, an increase in 27-hydroxylase, an increase in the LDL receptor and a decrease in intracellular free cholesterol. No change in influx receptors ScRA1 and CD36, nor nuclear proteins LXRα and PPARγ was observed. Conclusions: Statins do not normalize pro-atherogenic changes induced by lupus and these changes continue to worsen over time. This study provides mechanistic insight into LAPS findings by demonstrating that statins are overall ineffective in altering the balance of cholesterol transport gene expression in human macrophages. Furthermore, our study suggests that statins as a CVD treatment may not be useful in attenuating lipid overload in the SLE environment

    APOE4 is Associated with Differential Regional Vulnerability to Bioenergetic Deficits in Aged APOE Mice

    No full text
    © 2020, The Author(s). The ε4 allele of apolipoprotein E (APOE) is the dominant genetic risk factor for late-onset Alzheimer’s disease (AD). However, the reason for the association between APOE4 and AD remains unclear. While much of the research has focused on the ability of the apoE4 protein to increase the aggregation and decrease the clearance of Aβ, there is also an abundance of data showing that APOE4 negatively impacts many additional processes in the brain, including bioenergetics. In order to gain a more comprehensive understanding of APOE4′s role in AD pathogenesis, we performed a transcriptomics analysis of APOE4 vs. APOE3 expression in the entorhinal cortex (EC) and primary visual cortex (PVC) of aged APOE mice. This study revealed EC-specific upregulation of genes related to oxidative phosphorylation (OxPhos). Follow-up analysis utilizing the Seahorse platform showed decreased mitochondrial respiration with age in the hippocampus and cortex of APOE4 vs. APOE3 mice, but not in the EC of these mice. Additional studies, as well as the original transcriptomics data, suggest that multiple bioenergetic pathways are differentially regulated by APOE4 expression in the EC of aged APOE mice in order to increase the mitochondrial coupling efficiency in this region. Given the importance of the EC as one of the first regions to be affected by AD pathology in humans, the observation that the EC is susceptible to differential bioenergetic regulation in response to a metabolic stressor such as APOE4 may point to a causative factor in the pathogenesis of AD
    corecore