25 research outputs found

    Formation mechanisms of carbonate concretions of the Monterey Formation: Analyses of clumped isotopes, iron, sulfur and carbon

    Get PDF
    Carbonate concretions can form as a result of organic matter degradation within sediments. However, the ability to determine specific processes and formation temperatures of particular concretions has remained elusive. Here, we employ concentrations of carbonate-associated sulfate (CAS), δ^(34)S_(CAS) and clumped isotopes (along with more traditional approaches) to characterize the nature of concretion authigenesis within the Miocene Monterey Formation

    Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    Get PDF
    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds

    Comparison of clumped isotope signatures of dolomite cements to fluid inclusion thermometry in the temperature range of 73 to 176 °C

    Full text link
    Widespread application of the novel clumped isotope paleothermometer (Δ47) using dolomite samples from shallow crustal settings has been hindered by a lack of adequate constraints on clumped isotope systematics in dolomites that formed at temperatures greater than 50 °C. Consequently, many high-temperature applications involving diagenetic dolomites have required an assumption that the relationship between temperature and Δ47 in diagenetic dolomite resembles the theoretical temperature dependence for calcite. Here we present Δ47 results from dolomite cements for which precipitation temperatures were determined independently using fluid inclusion microthermometry. We compare a rock-based “calibration” for samples from the temperature range of ∼73 to 176 °C to previously published laboratory-derived calibrations for synthetic calcites. This novel combination of approaches yields results that are broadly consistent with results reported from controlled laboratory experiments, providing an important confirmation of the utility of clumped isotopes in real-world systems. Our results suggest that the Δ47 of dolomite cements may provide key information in the reconstruction of burial and thermal histories and also in the recognition of potential petroleum reservoirs

    North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum

    Full text link
    International audienceSouthwestern North America was wetter than present during the Last Glacial Maximum. The causes of increased water availability have been recently debated, and quantitative precipitation reconstructions have been underutilized in model-data comparisons. We investigate the climatological response of North Pacific atmospheric rivers to the glacial climate using model simulations and paleoclimate reconstructions. Atmospheric moisture transport due to these features shifted toward the southeast relative to modern. Enhanced southwesterly moisture delivery between Hawaii and California increased precipitation in the southwest while decreasing it in the Pacific Northwest, in agreement with reconstructions. Coupled climate models that are best able to reproduce reconstructed precipitation changes simulate decreases in sea level pressure across the eastern North Pacific and show the strongest southeastward shifts of moisture transport relative to a modern climate. Precipitation increases of ∼1 mm d-1, due largely to atmospheric rivers, are of the right magnitude to account for reconstructed pluvial conditions in parts of southwestern North America during the Last Glacial Maximum

    North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum

    Full text link
    International audienceSouthwestern North America was wetter than present during the Last Glacial Maximum. The causes of increased water availability have been recently debated, and quantitative precipitation reconstructions have been underutilized in model-data comparisons. We investigate the climatological response of North Pacific atmospheric rivers to the glacial climate using model simulations and paleoclimate reconstructions. Atmospheric moisture transport due to these features shifted toward the southeast relative to modern. Enhanced southwesterly moisture delivery between Hawaii and California increased precipitation in the southwest while decreasing it in the Pacific Northwest, in agreement with reconstructions. Coupled climate models that are best able to reproduce reconstructed precipitation changes simulate decreases in sea level pressure across the eastern North Pacific and show the strongest southeastward shifts of moisture transport relative to a modern climate. Precipitation increases of ∼1 mm d-1, due largely to atmospheric rivers, are of the right magnitude to account for reconstructed pluvial conditions in parts of southwestern North America during the Last Glacial Maximum

    Evaluation of Kinetic Effects on Clumped Isotope Fractionation (Δ\u3csub\u3e47\u3c/sub\u3e) during Inorganic Calcite Precipitation

    Get PDF
    Considerable efforts have been made to calibrate the Δ47 paleothermometer, which derives from the quantity of 13C–18O bonds in carbon dioxide produced during acid digestion of carbonate minerals versus its expected stochastic abundance, in a range of materials. However the impacts of precipitation rate, ionic strength, and pH on carbonate Δ47 values are still unclear. Here we present a set of 75 measurements of Δ47 values from inorganic calcites grown under well-controlled experimental conditions, where we evaluate the impact on Δ47 values of precipitation rate (log R = 1.8–4.4 μmol/m2/h), pH (8.3–10.5; NBS pH scale), and ionic strength (I = 35–832 mM). With the data available and at the current instrumental resolution, our study does not resolve any clear effects of pH, ionic strength, growth rate effects on measured Δ47 when compared in magnitude to the effects on δ18O over most of the ranges of parameters sampled by our analyses. If these relationships exist, they must be smaller than our current ability to resolve them within our dataset. Under our experimental conditions, a Δ47-temperature equation, which is apparently insensitive to variation in pH, precipitation rate, and ionic strength over the range of variables sampled, can be written asΔ47=(0.0387±0.0072)×106/T2+(0.2532±0.0829)(r2=0.9998,p=0.009) \u3eΔ47=(0.0387±0.0072)×106/T2+(0.2532±0.0829)(r2=0.9998,p=0.009) where Δ47 values were reported on the absolute Δ47 reference frame after normalizing to conventional 25 °C reaction temperature using an acid fractionation factor of −0.00141‰ °C−1
    corecore