143 research outputs found
Body temperatures of modern and extinct vertebrates from ^(13)C-^(18)O bond abundances in bioapatite
The stable isotope compositions of biologically precipitated apatite in bone, teeth, and scales are widely used to obtain information on the diet, behavior, and physiology of extinct organisms and to reconstruct past climate. Here we report the application of a new type of geochemical measurement to bioapatite, a “clumped-isotope” paleothermometer, based on the thermodynamically driven preference for ^(13)C and ^(18)O to bond with each other within carbonate ions in the bioapatite crystal lattice. This effect is dependent on temperature but, unlike conventional stable isotope paleothermometers, is independent from the isotopic composition of water from which the mineral formed. We show that the abundance of ^(13)C-^(18)O bonds in the carbonate component of tooth bioapatite from modern specimens decreases with increasing body temperature of the animal, following a relationship between isotope “clumping” and temperature that is statistically indistinguishable from inorganic calcite. This result is in agreement with a theoretical model of isotopic ordering in carbonate ion groups in apatite and calcite. This thermometer constrains body temperatures of bioapatite-producing organisms with an accuracy of 1–2 °C. Analyses of fossilized tooth enamel of both Pleistocene and Miocene age yielded temperatures within error of those derived from similar modern taxa. Clumped-isotope analysis of bioapatite represents a new approach in the study of the thermophysiology of extinct species, allowing the first direct measurement of their body temperatures. It will also open new avenues in the study of paleoclimate, as the measurement of clumped isotopes in phosphorites and fossils has the potential to reconstruct environmental temperatures
Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes
Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ĝ1/4 ĝ€55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM
Determining the Diagenetic Conditions of Concretion Formation: Assessing Temperatures and Pore Waters Using Clumped Isotopes
Carbonate-δ^(18)O paleothermometry is used in many diagenetic studies to unravel the thermal history of basins. However, this approach generally requires an assumed pore-water δ^(18)O (δ^(18)O_(pw)) value, a parameter that is difficult to quantify in past regimes. In addition, many processes can change the original isotopic composition of pore water, which further complicates the assignment of an initial δ^(18)O_(pw) and can lead to erroneous temperature estimates. Here, we use clumped-isotope thermometry, a proxy based on the ^(13)C–^(18)O bond abundance in carbonate minerals, to evaluate the temperatures of concretion formation in the Miocene Monterey Formation and the Cretaceous Holz Shale, California. These temperatures are combined with established carbonate–water fractionation factors to calculate the associated δ^(18)O_(pw).
Results demonstrate that diagenetic processes can modify the δ^(18)O of ancient pore water, confounding attempts to estimate diagenetic temperatures using standard approaches. Clumped-isotope-based temperature estimates for Monterey Formation concretions range from ∼ 17 to 35°C, up to ∼ 12°C higher than traditional δ^(18)O carbonate–water paleothermometry when δ^(18)O_(pw) values are assumed to equal Miocene seawater values. Calculated δ^(18)O_(pw) values range from +0.3 to +2.5‰ (VSMOW)—higher than coeval Miocene seawater, likely due to δ^(18)O_(pw) modification accompanying diagenesis of sedimentary siliceous phases. Clumped-isotope temperatures for the Holz Shale concretions range from ∼ 33 to 44°C, about 15 to 30°C lower than temperatures derived using the traditional method. Calculated δ^(18)O_(pw) values range from −5.0 to −2.9‰ and likely reflect the influx of meteoric fluids. We conclude that the use of clumped isotopes both improves the accuracy of temperature reconstructions and provides insight into the evolution of δ^(18)O_(pw) during diagenesis, addressing a longstanding conundrum in basin-evolution research
Sensitivity of clumped isotope temperatures in fossil benthic and planktic foraminifera to diagenetic alteration
Applying the clumped isotope (Δ47) thermometer to foraminifer microfossils offers the potential to significantly improve paleoclimate reconstructions, owing to its insensitivity to the isotopic composition of seawater (unlike traditional oxygen isotope (δ18O) analyses). However, the extent to which primary Δ47 signatures of foraminiferal calcites can be overprinted during diagenesis is not well known. Here, we present Δ47 data as well as high-resolution (∼10 kyr) δ18O and δ13C middle Eocene time series, measured on benthic and planktic foraminifera from ODP/IODP Sites 1408, 1409, 1410, 1050, 1260 and 1263 in the Atlantic Ocean. The sites examined span various oceanographic regimes, including the western tropical to mid-latitude North Atlantic, and the eastern mid-latitude South Atlantic. Comparing data from contemporaneous foraminifera with different preservation states, we test the effects of diagenetic alteration on paleotemperature reconstructions for the deep and surface ocean. We find that overall, primary Δ47 signatures appear similarly sensitive to diagenetic overprinting as δ18O, with differences in sensitivity depending on pore fluid chemistry and the amount of secondary calcite. Where planktic foraminifera are significantly altered, sea surface temperatures derived from Δ47 and δ18O values are biased towards cool temperatures. In comparison, Δ47 and δ18O values of benthic and well preserved planktic foraminifera are less affected by diagenesis and thus likely to yield robust foraminiferal calcification temperatures. With independent estimates of diagenetic calcite fractions, secondary overprints could be corrected for, using end-member modeling and Δ47-based temperatures from benthic foraminifera
Assessing cementation in the El Capitan Reef Complex and Lincolnshire Limestone using ^(13)C-^(18)O bond abundances in carbonates
The Permian El Capitan and Jurassic Lincolnshire limestones have been intensely studied for their stratigraphy,
depositional setting and paleoecology. Nevertheless, the diagenetic development of these two units remains
controversial, particularly with regard to diagenetic carbonate formation. Calcite cement phases have previously been
characterized via δ^(18)O and δ^(13)C in order to determine precipitation temperatures and carbon sources, however, these
results have lead to conflicting hypotheses
Formation mechanisms of carbonate concretions of the Monterey Formation: Analyses of clumped isotopes, iron, sulfur and carbon
Carbonate concretions can form as a result of organic matter degradation within sediments. However, the ability to determine
specific processes and formation temperatures of particular concretions has remained elusive. Here, we employ concentrations
of carbonate-associated sulfate (CAS), δ^(34)S_(CAS) and clumped isotopes (along with more traditional approaches) to characterize
the nature of concretion authigenesis within the Miocene Monterey Formation
High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle
The East Asian monsoon is one of Earth’s most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models. We applied clumped isotope thermometry to carbonates from the central Chinese Loess Plateau to reconstruct temperature and water isotope shifts from the Last Glacial Maximum to present. We find a summertime temperature change of 6–7 °C that is reproduced by climate model simulations presented here. Proxy data reveal evidence for a shift to lighter isotopic composition of meteoric waters in glacial times, which is also captured by our model. Analysis of model outputs suggests that glacial cooling over continental China is significantly amplified by the influence of stationary waves, which, in turn, are enhanced by continental ice sheets. These results not only support high regional climate sensitivity in Central China but highlight the fundamental role of planetary-scale atmospheric dynamics in the sensitivity of regional climates to continental glaciation, changing greenhouse gas levels, and insolation
Alteration of volcaniclastic deposits at Minna Bluff : geochemical insights on mineralizing environment and climate during the Late Miocene in Antarctica
Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 3258–3280, doi:10.1002/2014GC005422.Secondary minerals in volcaniclastic deposits at Minna Bluff, a 45 km long peninsula in the Ross Sea, are used to infer processes of alteration and environmental conditions in the Late Miocene. Glassy volcaniclastic deposits are altered and contain phillipsite and chabazite, low to high-Mg carbonates, chalcedony, and clay. The δ18O of carbonates and chalcedony is variable, ranging from −0.50 to 21.53‰ and 0.68 to 10.37‰, respectively, and δD for chalcedony is light (−187.8 to −220.6‰), corresponding to Antarctic meteoric water. A mean carbonate 87Sr/86Sr ratio of 0.70327 ± 0.0009 (1σ, n = 12) is comparable to lava and suggests freshwater, as opposed to seawater, caused the alteration. Minerals were precipitated at elevated temperatures (91 and 104°C) based on quartz-calcite equilibrium, carbonate 13C-18C thermometry (Δ47 derived temperature = 5° to 43°C) and stability of zeolites in geothermal systems (>10 to ∼100°C). The alteration was a result of isolated, ephemeral events involving the exchange between heated meteoric water and glass during or soon after the formation of each deposit. Near-surface evaporative distillation can explain 18O-enriched compositions for some Mg-rich carbonates and chalcedony. The δ18Owater calculated for carbonates (−15.8 to −22.9‰) reveals a broad change, becoming heavier between ∼12 and ∼7 Ma, consistent with a warming climate. These findings are independently corroborated by the interpretation of Late Miocene sedimentary sequences recovered from nearby sediment cores. However, in contrast to a cold-based thermal regime proposed for ice flow at core sites, wet-based conditions prevailed at Minna Bluff; a likely consequence of high heat flow associated with an active magma system.This research was funded by a collaborative grant NSF OPP 05-38033. It also was supported by UNED/NSF 250550001146, NSF grants EAR-0949191, ARC-1215551, EAR-1325054, EAR-1352212, EAR-1049351, ACS grant 51182-DNI2, DOE grants DE-FG02-13ER16402, and DE-SC0010288, a Hellman Fellowship, and a Katzner grant (BGSU).2015-02-1
The role of temperature in the initiation of the end-Triassic mass extinction
International audienceThe end-Triassic mass extinction coincided with the eruption of the Central Atlantic Magmatic Province, a large igneous province responsible for the massive atmospheric input of potentially climate-altering volatile compounds that is associated with a sharp rise in atmospheric CO2. The extinction mechanism is debated, but both short-term cooling (similar to 10s of years) related to sulfur aerosols and longer-term warming (10,000 yrs) related to CO2 emissions-essentially opposite hypotheses-are suggested triggers. Until now, no temperature records spanning this crucial interval were available to provide a baseline or to differentiate between hypothesized mechanisms. Here, we use clumped-isotope paleothermometry of shallow marine microbialites coupled with climate modeling to reconstruct ocean temperature at the extinction horizon. We find mild to warm ocean temperatures during the extinction event and evidence for repeated temperature swings of similar to 16 degrees C, which we interpret as a signature of strong seasonality. These results constitute the oldest non-biomineralized marine seasonal temperature record. We resolve no apparent evidence for short-term cooling or initial warming across the 1-80kyr of the extinction event our record captures, implying that the initial onset of the biodiversity crisis may necessitate another mechanism
Influence of surface ocean density on planktonic foraminifera calcification.
This study provides evidence that ambient seawater density influences calcification and may account for the observed planktonic foraminifera shell mass increase during glacial times. Volumes of weighed fossil Globigerina bulloides shells were accurately determined using X-ray Computer Tomography and were combined with water density reconstructions from Mg/Ca and δ18O measurements to estimate the buoyancy force exerted on each shell. After assessment of dissolution effects, the resulting relationship between shell mass and buoyancy suggests that heavier shells would need to be precipitated in glacial climates in order for these organisms to remain at their optimum living depth, and counterbalance the increased buoyant force of a denser, glacial ocean. Furthermore, the reanalysis of bibliographic data allowed the determination of a relationship between G. bulloides shell mass and ocean density, which introduces implications of a negative feedback mechanism for the uptake of atmospheric CO2 by the oceans
- …