2 research outputs found

    Recent Developments and Applications of Nanosystems in the Preservation of Meat and Meat Products

    No full text
    Due to their high water, lipid, and protein content, meat and meat products are highly perishable. The principal spoilage mechanisms involved are protein and lipid oxidation and deterioration caused by microbial growth. Therefore, efforts are ongoing to ensure food safety and increase shelf life. The development of low-cost, innovative, eco-friendly approaches, such as nanotechnology, using non-toxic, inexpensive, FDA-approved ingredients is reducing the incorporation of chemical additives while enhancing effectiveness and functionality. This review focuses on advances in the incorporation of natural additives that increase the shelf life of meat and meat products through the application of nanosystems. The main solvent-free preparation methods are reviewed, including those that involve mixing organic–inorganic or organic–organic compounds with such natural substances as essential oils and plant extracts. The performance of these additives is analyzed in terms of their antioxidant effect when applied directly to meat as edible coatings or marinades, and during manufacturing processes. The review concludes that nanotechnology represents an excellent option for the efficient design of new meat products with enhanced characteristics

    Changes in Collagen across Pork Tenderloin during Marination with Rosehip Nanocapsules

    No full text
    The objective of this study was to prepare zein–gum Arabic nanocapsules with rosehip oil (NC-RH), apply them to pork tenderloin, and analyze the changes in collagen structure under different conditions (pH 6.5 and 4.0) and temperatures (25 °C and 4 °C). NC-RHs were prepared using the nanoprecipitation method. Nanocapsules had a particle size of 423 ± 4.1 nm, a polydispersity index of 0.125 ± 3.1, a zeta potential value of −20.1 ± 0.41 mV, an encapsulation efficiency of 75.84 ± 3.1%, and backscattering (ΔBS = 10%); the antioxidant capacity of DPPH was 1052 ± 4.2 µM Eq Trolox and the radical scavenging capacity was 84 ± 0.4%. The dispersions exhibited Newtonian behavior at 25 °C and 4 °C. Incorporating NC-RH into acid marination benefited the tenderness, water-holding capacity, and collagen swelling, and favored changes in myofibrillar proteins corroborated with histological tests. The conditions with the best changes in pork tenderloin were a pH of 4.0 at 4 °C with an NC-RH-administered 11.47 ± 2.2% collagen area. Incorporating rosehip nanocapsules modifies collagen fibers and can be applied in pork marinades to increase the shelf life of a functional product
    corecore