159 research outputs found

    Static Characterization of InAs/AlGaAs Broadband Self-Assembled Quantum Dot Lasers

    Get PDF
    The static-characteristics of InAs/AlGaAs broadband self-assembled quantum-dot laser diodes (SAQD-LDs) have been studied to solve the rate equations numerically using fourth-order Runge-Kutta method. Energy level, size, and composition distributions of the InAs/AlGaAs broadband quantum-dots (QDs) are considered and their effects on Static-characteristics are investigated. Simulated results of static-characteristics show that nonlinearity appears in light-current characteristics whereas homogeneous broadening (HB) becomes equal to inhomogeneous broadening (IHB). Slope-efficiency increases as the HB heightens up to the IHB. Exceeding the HB from IHB results in degradation of light-current characteristics. In fact, InAs/AlGaAs broadband SAQD-LD has the best performance when HB is equal to IHB. Light-current characteristics degrade and threshold current increases as the IHB enhances. We also investigate the effects of QD coverage on the laser performance and show that there is an optimum QD coverage in which the SAQD-LD operates with lowest possible threshold current and maximum output power as whatever the QD coverage enhances from that optimum amount, the threshold current increases and slope efficiency decreases. 

    Petroleum-wax separation

    Get PDF
    A process for dewaxing is described. It includes the steps of mixing a waxy feedstock near its pour point with an ambient or below ambient temperature solvent essentially free of a selected cosolvent, to form a solvent/feedstock mixture, and subsequently adding the cosolvent to the solvent/feedstock mixture to cause instantaneous precipitation of wax on addition of cosolvent. The amount of wax precipitation is controlled by the quantity and temperature of the cosolvent added. The cosolvent is essentially completely miscible with the solvent, but immiscible with the oil and wax. For example, alcohols (methanol, ethanol, propanol), ketones (ketene, acetone), amines, etc. The process of the present invention provides the advantages of lower solvent ratios (higher solvent recovery), higher filtration temperatures, “environmentally compatible” solvents, rapid filtration rates, and debottlenecking of existing dewaxing plants

    Petroleum-wax separation

    Get PDF
    A process for dewaxing is described. It includes the steps of mixing a waxy feedstock near its pour point with an ambient or below ambient temperature solvent essentially free of a selected cosolvent, to form a solvent/feedstock mixture, and subsequently adding the cosolvent to the solvent/feedstock mixture to cause instantaneous precipitation of wax on addition of cosolvent. The amount of wax precipitation is controlled by the quantity and temperature of the cosolvent added. The cosolvent is essentially completely miscible with the solvent, but immiscible with the oil and wax. For example, alcohols (methanol, ethanol, propanol), ketones (ketene, acetone), amines, etc. The process of the present invention provides the advantages of lower solvent ratios (higher solvent recovery), higher filtration temperatures, “environmentally compatible” solvents, rapid filtration rates, and debottlenecking of existing dewaxing plants

    Process for petroleum-wax separation at or above room temperature

    Get PDF
    Processes for separating waxes of different melting points from a room temperature amorphous or liquid hydrocarbon mixture in an energy conservative manner by selectively causing precipitation of crystallized waxes are disclosed. The processes involve the use of a selected co-solvent totally miscible with light and intermediate hydrocarbons from a group consisting of acetone, ketene, propanone, 2-propanone, methanol, ethanol, isopropanol, N-propanol, acetic acid, formic acid, and propionic acid or combinations thereof as a precipitating agent. Hydrocarbon mixtures, especially those with elevated pour points are first diluted by solvents such as toluene and/or methyl ethyl ketone which must be free of any significant quantity of the aforesaid co-solvents. The diluted hydrocarbon mixture at above 50° F is mixed with one or more of such selected co-solvents in a ratio preferably between 1:1 and 10:1 by weight to the heavy hydrocarbon content of the mixture; five minutes or more without artificial cooling is allowed to permit crystallization of waxes which are removed in solid form by a physical process such as filtering, settling, or the like. By controlling the amount and nature of the selected co-solvent and by including or excluding water or brine with the co-solvent, valuable waxes of high melting point may be selectively separated, or all waxes may be removed indiscriminately. Performing the separation process in several stages of adding co-solvent and/or water permits selecting out more valuable high melting point waxes first before succeeding stages reduce the wax content of the remaining liquid hydrocarbon to minimal values to enhance its value

    EPICS: Children\u27s Educational Demonstrations

    Get PDF

    Petroleum-wax separation

    Get PDF
    A process for dewaxing is described. It includes the steps of mixing a waxy feedstock near its pour point with an ambient or below ambient temperature solvent essentially free of a selected cosolvent, to form a solvent/feedstock mixture, and subsequently adding the cosolvent to the solvent/feedstock mixture to cause instantaneous precipitation of wax on addition of cosolvent. The amount of wax precipitation is controlled by the quantity and temperature of the cosolvent added. The cosolvent is essentially completely miscible with the solvent, but immiscible with the oil and wax. For example, alcohols (methanol, ethanol, propanol), ketones (ketene, acetone), amines, etc. The process of the present invention provides the advantages of lower solvent ratios (higher solvent recovery), higher filtration temperatures, “environmentally compatible” solvents, rapid filtration rates, and debottlenecking of existing dewaxing plants

    Robust deep labeling of radiological emphysema subtypes using squeeze and excitation convolutional neural networks: The MESA Lung and SPIROMICS Studies

    Full text link
    Pulmonary emphysema, the progressive, irreversible loss of lung tissue, is conventionally categorized into three subtypes identifiable on pathology and on lung computed tomography (CT) images. Recent work has led to the unsupervised learning of ten spatially-informed lung texture patterns (sLTPs) on lung CT, representing distinct patterns of emphysematous lung parenchyma based on both textural appearance and spatial location within the lung, and which aggregate into 6 robust and reproducible CT Emphysema Subtypes (CTES). Existing methods for sLTP segmentation, however, are slow and highly sensitive to changes in CT acquisition protocol. In this work, we present a robust 3-D squeeze-and-excitation CNN for supervised classification of sLTPs and CTES on lung CT. Our results demonstrate that this model achieves accurate and reproducible sLTP segmentation on lung CTscans, across two independent cohorts and independently of scanner manufacturer and model

    Prevalence and treatment patterns of psoriatic arthritis in the UK.

    No full text
    OBJECTIVES: The objectives of this study were to determine the prevalence of PsA in The Health Improvement Network (THIN), a large population-based medical records database in the UK, to examine factors associated with prevalent PsA among patients with psoriasis and to describe the use of DMARDs in patients with PsA. METHODS: Two cohorts were derived from THIN to examine the prevalence of PsA in a cross-sectional study among all patients aged 18-90 years and among a subcohort of 4900 psoriasis patients aged 45-65 years. Prescription codes were used to describe therapies after the diagnosis of PsA. Associations for prevalent PsA among psoriasis patients were assessed using logistic regression analysis. RESULTS: Among 4.8 million patients in THIN between the ages of 18 and 90 years, 9045 patients had at least one medical code for PsA, giving an overall prevalence of 0.19% (95% CI 0.19%, 0.19%). Of those patients, 45.9% with PsA have been prescribed DMARDs. Among the 4064 confirmed psoriasis patients, the prevalence of PsA was 8.6% (95% CI 7.7%, 9.5%). PsA was more prevalent among patients with severe psoriasis [odds ratio (OR) 3.34; 95% CI 2.40, 4.65], obesity (OR 1.77; 95% CI 1.30, 2.41) and duration of psoriasis for ≥10 years (OR 7.42; 95% CI 3.86, 14.25) in the fully adjusted model. CONCLUSION: The prevalence of PsA in THIN is consistent with previous population-based estimates. Limitations include a definition of PsA based on a diagnostic code rather than Classification Criteria for Psoriatic Arthritis (CASPAR) criteria. Given the large population of PsA patients, THIN is an important resource for the study of PsA

    Effect of Different Parts (Leaf, Stem and Stalk) and Seasons (Summer and Winter) on the Chemical Compositions and Antioxidant Activity of Moringa oleifera

    Get PDF
    Moringa oleifera, Lam. (Moringaceae) is grown world-wide in the tropics and sub-tropics of Asia and Africa and contains abundant various nutrients. This study describes the effect of different parts (leaf, stem and stalk) and seasons (summer and winter) on the chemical compositions and antioxidant activity of M. oleifera grown in Taiwan. The results showed that the winter samples of Moringa had higher ash (except the stalk part), calcium and phenolic compounds (except the leaf part) and stronger antioxidative activity than summer samples. The methanolic extract of Moringa showed strong scavenging effect of DPPH radicals and reducing power. The trend of antioxidative activity as a function of the part of Moringa was: leaf > stem > stalk for samples from both seasons investigated. The Moringa extract showed strong hydrogen peroxide scavenging activity and high Superoxide Dismutase (SOD) activity except the stalk part
    • …
    corecore