218 research outputs found

    Combined Integer and Floating Point Multiplication Architecture(CIFM) for FPGAs and Its Reversible Logic Implementation

    Full text link
    In this paper, the authors propose the idea of a combined integer and floating point multiplier(CIFM) for FPGAs. The authors propose the replacement of existing 18x18 dedicated multipliers in FPGAs with dedicated 24x24 multipliers designed with small 4x4 bit multipliers. It is also proposed that for every dedicated 24x24 bit multiplier block designed with 4x4 bit multipliers, four redundant 4x4 multiplier should be provided to enforce the feature of self repairability (to recover from the faults). In the proposed CIFM reconfigurability at run time is also provided resulting in low power. The major source of motivation for providing the dedicated 24x24 bit multiplier stems from the fact that single precision floating point multiplier requires 24x24 bit integer multiplier for mantissa multiplication. A reconfigurable, self-repairable 24x24 bit multiplier (implemented with 4x4 bit multiply modules) will ideally suit this purpose, making FPGAs more suitable for integer as well floating point operations. A dedicated 4x4 bit multiplier is also proposed in this paper. Moreover, in the recent years, reversible logic has emerged as a promising technology having its applications in low power CMOS, quantum computing, nanotechnology, and optical computing. It is not possible to realize quantum computing without reversible logic. Thus, this paper also paper provides the reversible logic implementation of the proposed CIFM. The reversible CIFM designed and proposed here will form the basis of the completely reversible FPGAs.Comment: Published in the proceedings of the The 49th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2006), Puerto Rico, August 2006. Nominated for the Student Paper Award(12 papers are nominated for Student paper Award among all submissions

    A Comparative Study of Machine Learning Models for Tabular Data Through Challenge of Monitoring Parkinson's Disease Progression Using Voice Recordings

    Full text link
    People with Parkinson's disease must be regularly monitored by their physician to observe how the disease is progressing and potentially adjust treatment plans to mitigate the symptoms. Monitoring the progression of the disease through a voice recording captured by the patient at their own home can make the process faster and less stressful. Using a dataset of voice recordings of 42 people with early-stage Parkinson's disease over a time span of 6 months, we applied multiple machine learning techniques to find a correlation between the voice recording and the patient's motor UPDRS score. We approached this problem using a multitude of both regression and classification techniques. Much of this paper is dedicated to mapping the voice data to motor UPDRS scores using regression techniques in order to obtain a more precise value for unknown instances. Through this comparative study of variant machine learning methods, we realized some old machine learning methods like trees outperform cutting edge deep learning models on numerous tabular datasets.Comment: Accepted at "HIMS'20 - The 6th Int'l Conf on Health Informatics and Medical Systems"; https://americancse.org/events/csce2020/conferences/hims2

    A methodology for speeding up matrix vector multiplication for single/multi-core architectures

    Get PDF
    In this paper, a new methodology for computing the Dense Matrix Vector Multiplication, for both embedded (processors without SIMD unit) and general purpose processors (single and multi-core processors, with SIMD unit), is presented. This methodology achieves higher execution speed than ATLAS state-of-the-art library (speedup from 1.2 up to 1.45). This is achieved by fully exploiting the combination of the software (e.g., data reuse) and hardware parameters (e.g., data cache associativity) which are considered simultaneously as one problem and not separately, giving a smaller search space and high-quality solutions. The proposed methodology produces a different schedule for different values of the (i) number of the levels of data cache; (ii) data cache sizes; (iii) data cache associativities; (iv) data cache and main memory latencies; (v) data array layout of the matrix and (vi) number of cores

    Aerodynamic Shape Optimization of Axial Turbines in Three Dimensional Flow

    Get PDF
    Aerodynamic shape optimization of axial gas turbines in three dimensional flow is addressed. An effective and practical shape parameterization strategy for turbine stages is introduced to minimize the adverse effects of three-dimensional flow features on the turbine performance. The optimization method combines a genetic algorithm (GA), with a Response Surface Approximation (RSA) of the Artifcial Neural Network (ANN) type. During the optimization process, the individual objectives and constraints are approximated using ANN that is trained and tested using a few three-dimensional CFD ow simulations; the latter are obtained using the commercial CFD package Ansys-Fluent. To minimize three-dimensional effects, the stator and rotor stacking curves are taken as the design variable. They are parametrically represented using a quadratic rational Bezier curve (QRBC) whose parameters are directly and explicitly related to the blade lean, sweep and bow, which are used as the design variables. In addition, a noble representation of the stagger angle in the spanwise direction is introduced. The described strategy was applied to optimize the performance of the E/TU-3 axial turbine stage which is designed and tested in Germany. The optimization objectives introduced the isentropic efficiency and the streamwise vorticity, subject to some constraints. This optimization strategy proved to be successful, fexible and practical, and resulted in remarkable improvements in stage performance

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access
    • …
    corecore