31 research outputs found
Novel statistical approaches for non-normal censored immunological data: analysis of cytokine and gene expression data
Background: For several immune-mediated diseases, immunological analysis will become more complex in the future with datasets in which cytokine and gene expression data play a major role. These data have certain characteristics that require sophisticated statistical analysis such as strategies for non-normal distribution and censoring. Additionally, complex and multiple immunological relationships need to be adjusted for potential confounding and interaction effects.
Objective: We aimed to introduce and apply different methods for statistical analysis of non-normal censored cytokine and gene expression data. Furthermore, we assessed the performance and accuracy of a novel regression approach in order to allow adjusting for covariates and potential confounding.
Methods: For non-normally distributed censored data traditional means such as the Kaplan-Meier method or the generalized Wilcoxon test are described. In order to adjust for covariates the novel approach named Tobit regression on ranks was introduced. Its performance and accuracy for analysis of non-normal censored cytokine/gene expression data was evaluated by a simulation study and a statistical experiment applying permutation and bootstrapping.
Results: If adjustment for covariates is not necessary traditional statistical methods are adequate for non-normal censored data. Comparable with these and appropriate if additional adjustment is required, Tobit regression on ranks is a valid method. Its power, type-I error rate and accuracy were comparable to the classical Tobit regression.
Conclusion: Non-normally distributed censored immunological data require appropriate statistical methods. Tobit regression on ranks meets these requirements and can be used for adjustment for covariates and potential confounding in large and complex immunological datasets
Robust Estimation of Wage Dispersion with Censored Data: An Application to Occupational Earnings Risk and Risk Attitudes
We present a semiparametric method to estimate group-level dispersion, which is particularly effective in the presence of censored data. We apply this procedure to obtain measures of occupation-specific wage dispersion using top-coded administrative wage data from the German IAB Employment Sample (IABS). We then relate these robust measures of earnings risk to the risk attitudes of individuals working in these occupations. We find that willingness to take risk is positively correlated with the wage dispersion of an individual's occupation