2 research outputs found

    Track geometry monitoring by an on-board computer-vision-based sensor system

    Get PDF
    This article illustrates some outcomes of the EU project Assets4Rail, founded within the Shift2Rail Joint Undertaking. Nowadays, Track recording vehicles (TRV) are equipped with laser/optical systems with inertial units to monitor track geometry (TG). Dedicated trains and sophisticated measurement equipment are difficult, costly to acquire and maintain. So the time interval between two TRV recordings of the TG on the same line section cannot be too close (twice per month to twice per year). Recently, infrastructure managers have been more interested in using commercial trains to monitor track condition in a cost-effective manner. TRVs' expensive and constantly maintained optical systems make them unsuitable for commercial fleets. On-board sensor systems based on indirect measurements such as accelerations have been developed in various studies. While detecting the vertical irregularity is a straightforward method by doubling the recorded acceleration, it is yet an unsolved issue for lateral irregularities due to the complicated relative wheel-rail motion. The proposed system combines wheel-rail transversal relative position data with on-board lateral acceleration sensors to detect lateral alignment issues. It includes a functional prototype of an on-board computer vision sensor capable of monitoring Lateral displacement for TG measurements. This eliminates measurement errors due to wheelset transverse displacements relative to the track, which is essential for calculating lateral alignment. The sensor system prototype was tested in Italy at 100 km/h on the Aldebaran 2.0 TRV of RFI, the main Italian Infrastructure Manager. It was found that the estimated lateral displacement well corresponds to the lateral alignment acquired by the Aldebaran 2.0 commercial TG inspection equipment. Moreover, due to the lack of measurement of the acceleration on board the Aldebaran 2.0 TRV, a Simpack® simulation provide with axle box acceleration values, to evaluate the correlation between them, LDWR and track alignment issues

    Migliorare l’accessibilità dei treni. Lezioni apprese dal progetto CARBODIN // Improving train accessibility. Lessons learned from the CARBODIN project

    No full text
    Il presente lavoro, svolto nell’ambito del progetto europeo CARBODIN, mira a studiare gli impatti di un nuovo dispositivo di ausilio per la salita a bordo concepito come una soluzione innovativa volta a migliorare l’accessibilità al treno per i passeggeri che devono affrontare manovre di imbarco e sbarco difficoltose a causa della loro ridotta mobilità. Presso la struttura MASATS è stata effettuata una sperimentazione che ha coinvolto un campione eterogeneo di Persone a Mobilità Ridotta (PMR). Sono stati testati diversi scenari per riprodurre varie condizioni potenzialmente rilevanti per casi reali, come l’altezza del marciapiede, la distanza tra il marciapiede e la soglia d’ingresso al treno e altre condizioni complesse di imbarco e sbarco (I&S). Quanto sopra è stato possibile poiché il prototipo è stato equipaggiato con tre varianti di interfaccia marciapiede-treno per simulare diverse tipologie di banchina. I dati raccolti dall’attività di test hanno consentito di effettuare uno studio statistico dettagliato dei tempi di salita a bordo o discesa delle PMR, in funzione delle diverse tipologie di disabilità e secondo scenari di criticità formulati in base ad uno specifico numero di passeggeri che effettuano la salita e discesa da una singola porta del treno.- This work, carried out within the CARBODIN EU-funded project, aims to study the impacts of a new train boarding device conceived as an innovative solution that improves train accessibility for passengers encountering significant boarding and alighting maneuvers due to their reduced mobility. Experiments were carried out at the MASATS facility, involving a heterogeneous sample of Persons with Reduced Mobility (PRM). Different scenarios were tested to reproduce various conditions potentially relevant for real cases, such as platform height, the distance between the platform and the doorsill, the residual gap between the gap filler and the platform, and other complex boarding and alighting (B&A) conditions. The above was possible thanks to the prototype equipped with three platform-to-train interface variants for simulating different platform designs. The data collected from the testing activity allowed for a detailed statistical study of PRM’s boarding and alighting times per train door in different disability types for a particular number of alighting and boarding passenger
    corecore