27 research outputs found

    First operation and drift field performance of a large area double phase LAr Electron Multiplier Time Projection Chamber with an immersed Greinacher high-voltage multiplier

    Full text link
    We have operated a liquid-argon large-electron-multiplier time-projection chamber (LAr LEM-TPC) with a large active area of 76 ×\times 40 cm2^2 and a drift length of 60 cm. This setup represents the largest chamber ever achieved with this novel detector concept. The chamber is equipped with an immersed built-in cryogenic Greinacher multi-stage high-voltage (HV) multiplier, which, when subjected to an external AC HV of \sim1 kVpp_{\mathrm{pp}}, statically charges up to a voltage a factor of \sim30 higher inside the LAr vessel, creating a uniform drift field of \sim0.5 kV/cm over the full drift length. This large LAr LEM-TPC was brought into successful operation in the double-phase (liquid-vapor) operation mode and tested during a period of \sim1 month, recording impressive three-dimensional images of very high-quality from cosmic particles traversing or interacting in the sensitive volume. The double phase readout and HV systems achieved stable operation in cryogenic conditions demonstrating their good characteristics, which particularly suit applications for next-generation giant-scale LAr-TPCs.Comment: 26 pages, 19 figure

    The Argon Dark Matter Experiment (ArDM)

    Full text link
    The ArDM experiment, a 1 ton liquid argon TPC/Calorimeter, is designed for the detection of dark matter particles which can scatter off the spinless argon nuclei. These events producing a recoiling nucleus will be discerned by their light to charge ratio, as well as the time structure of the scintillation light. The experiment is presently under construction and will be commissioned on surface at CERN. Here we describe the detector concept and give a short review on the main detector components.Comment: Proceedings of 4th Patras workshop (DESY) on Axions, Wimps and Wisps (4 pages, 4 figures

    First results on light readout from the 1-ton ArDM liquid argon detector for dark matter searches

    Full text link
    ArDM-1t is the prototype for a next generation WIMP detector measuring both the scintillation light and the ionization charge from nuclear recoils in a 1-ton liquid argon target. The goal is to reach a minimum recoil energy of 30\,keVr to detect recoiling nuclei. In this paper we describe the experimental concept and present results on the light detection system, tested for the first time in ArDM on the surface at CERN. With a preliminary and incomplete set of PMTs, the light yield at zero electric field is found to be between 0.3-0.5 phe/keVee depending on the position within the detector volume, confirming our expectations based on smaller detector setups.Comment: 14 pages, 10 figures, v2 accepted for publication in JINS

    Luminescence quenching of the triplet excimer state by air traces in gaseous argon

    Full text link
    While developing a liquid argon detector for dark matter searches we investigate the influence of air contamination on the VUV scintillation yield in gaseous argon at atmospheric pressure. We determine with a radioactive alpha-source the photon yield for various partial air pressures and different reflectors and wavelength shifters. We find for the fast scintillation component a time constant tau1= 11.3 +- 2.8 ns, independent of gas purity. However, the decay time of the slow component depends on gas purity and is a good indicator for the total VUV light yield. This dependence is attributed to impurities destroying the long-lived argon excimer states. The population ratio between the slowly and the fast decaying excimer states is determined for alpha-particles to be 5.5 +-0.6 in argon gas at 1100 mbar and room temperature. The measured mean life of the slow component is tau2 = 3.140 +- 0.067 microsec at a partial air pressure of 2 x 10-6 mbar.Comment: 7 pages submitted to NIM

    Towards a liquid Argon TPC without evacuation: filling of a 6 m^3 vessel with argon gas from air to ppm impurities concentration through flushing

    Full text link
    In this paper we present a successful experimental test of filling a volume of 6 m3^3 with argon gas, starting from normal ambient air and reducing the impurities content down to few parts per million (ppm) oxygen equivalent. This level of contamination was directly monitored measuring the slow component of the scintillation light of the Ar gas, which is sensitive to {\it all} sources of impurities affecting directly the argon scintillation.Comment: 9 pages, 6 figures, to appear in Proc. 1st International Workshop towards the Giant Liquid Argon Charge Imaging Experiment (GLA2010), Tsukuba, March 201

    Transient thermal effects in solid noble gases as materials for the detection of Dark Matter

    Full text link
    The transient phenomena produced in solid noble gases by the stopping of the recoils resulting from the elastic scattering processes of WIMPs from the galactic halo were modelled, as dependencies of the temperatures of lattice and electronic subsystems on the distance to the recoil's trajectory, and time from its passage. The peculiarities of these thermal transients produced in Ar, Kr and Xe were analysed for different initial temperatures and WIMP energies, and were correlated with the characteristics of the targets and with the energy loss of the recoils. The results were compared with the thermal spikes produced by the same WIMPs in Si and Ge. In the range of the energy of interest, up to tens of keV for the self-recoil, local phase transitions solid - liquid and even liquid - gas were found possible, and the threshold parameters were established.Comment: Minor corrections and updated references; accepted to JCA

    Probing the Local Velocity Distribution of WIMP Dark Matter with Directional Detectors

    Get PDF
    We explore the ability of directional nuclear-recoil detectors to constrain the local velocity distribution of weakly interacting massive particle (WIMP) dark matter by performing Bayesian parameter estimation on simulated recoil-event data sets. We discuss in detail how directional information, when combined with measurements of the recoil-energy spectrum, helps break degeneracies in the velocity-distribution parameters. We also consider the possibility that velocity structures such as cold tidal streams or a dark disk may also be present in addition to the Galactic halo. Assuming a carbon-tetrafluoride detector with a 30-kg-yr exposure, a 50-GeV WIMP mass, and a WIMP-nucleon spin-dependent cross-section of 0.001 pb, we show that the properties of a cold tidal stream may be well constrained. However, measurement of the parameters of a dark-disk component with a low lag speed of ~50 km/s may be challenging unless energy thresholds are improved.Comment: 38 pages, 15 figure

    Underground Neutrino Detectors for Particle and Astroparticle Science: the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER)

    Full text link
    The current focus of the CERN program is the Large Hadron Collider (LHC), however, CERN is engaged in long baseline neutrino physics with the CNGS project and supports T2K as recognized CERN RE13, and for good reasons: a number of observed phenomena in high-energy physics and cosmology lack their resolution within the Standard Model of particle physics; these puzzles include the origin of neutrino masses, CP-violation in the leptonic sector, and baryon asymmetry of the Universe. They will only partially be addressed at LHC. A positive measurement of sin22θ13>0.01\sin^22\theta_{13}>0.01 would certainly give a tremendous boost to neutrino physics by opening the possibility to study CP violation in the lepton sector and the determination of the neutrino mass hierarchy with upgraded conventional super-beams. These experiments (so called ``Phase II'') require, in addition to an upgraded beam power, next generation very massive neutrino detectors with excellent energy resolution and high detection efficiency in a wide neutrino energy range, to cover 1st and 2nd oscillation maxima, and excellent particle identification and π0\pi^0 background suppression. Two generations of large water Cherenkov detectors at Kamioka (Kamiokande and Super-Kamiokande) have been extremely successful. And there are good reasons to consider a third generation water Cherenkov detector with an order of magnitude larger mass than Super-Kamiokande for both non-accelerator (proton decay, supernovae, ...) and accelerator-based physics. On the other hand, a very massive underground liquid Argon detector of about 100 kton could represent a credible alternative for the precision measurements of ``Phase II'' and aim at significantly new results in neutrino astroparticle and non-accelerator-based particle physics (e.g. proton decay).Comment: 31 pages, 14 figure
    corecore