1,954 research outputs found

    Feedback-limited Accretion: Luminous Signatures from Growing Planets

    Full text link
    Planets form in discs of gas and dust around stars, and keep growing by accretion of disc material while available. Massive planets clear a gap in that protoplanetary disc, but still accrete through spiral wakes. On its way to the planet, the gas will settle on a \emph{circumplanetary} disc around the planet and slowly accrete on to it. The energy of the accreted gas will be released, heating the planet surroundings in a feedback process. For high enough accretion rates the planet should be detectable at infrared wavelengths. We aim to find whether detectable planet luminosities, ≳10−3 L⊙\gtrsim 10^{-3} \, \textrm{L}_\odot, can occur when considering that the planet luminosity is coupled to the accretion, and also to study which other effects has the feedback on the dynamics of the circumplanetary and the gap regions. We model a planet with mass ratio q=10−3q=10^{-3}, orbiting at 10 AU from a solar mass star, using a modified version of the 2D code FARGO-AD, which includes a prescription for the accretion and feedback luminosity of the planet. We find that the planetary feedback is able to partially deplete the circumplanetary disc, and to reduce the accretion rate onto the planet. However, detectable luminosities of Lp≳10−3 L⊙L_\textrm{p}\gtrsim 10^{-3}\, \textrm{L}_\odot are still produced. The feedback also contributes to partially refilling the gap, to heat up the coorbital region, and to perturb the orbital velocity of the gas.Comment: Submitted to MNRA

    Analytical operator solution of master equations describing phase-sensitive processes

    Get PDF
    We present a method of solving master equations which may describe, in their most general form, phase sensitive processes such as decay and amplification. We make use of the superoperator technique.Comment: 10 pages, LaTex, 3 figures, accepted for publication in International Journal of Modern Physics

    A refined analysis of the low-mass eclipsing binary system T-Cyg1-12664

    Full text link
    The observational mass-radius relation of main sequence stars with masses between ~0.3 and 1.0 Msun reveals deviations between the stellar radii predicted by models and the observed radii of stars in detached binaries. We generate an accurate physical model of the low-mass eclipsing binary T-Cyg1-12664 in the Kepler mission field to measure the physical parameters of its components and to compare them with the prediction of theoretical stellar evolution models. We analyze the Kepler mission light curve of T-Cyg1-12664 to accurately measure the times and phases of the primary and secondary eclipse. In addition, we measure the rotational period of the primary component by analyzing the out-of-eclipse oscillations that are due to spots. We accurately constrain the effective temperature of the system using ground-based absolute photometry in B, V, Rc, and Ic. We also obtain and analyze V, Rc, Ic differential light curves to measure the eccentricity and the orbital inclination of the system, and a precise Teff ratio. From the joint analysis of new radial velocities and those in the literature we measure the individual masses of the stars. Finally, we use the PHOEBE code to generate a physical model of the system. T-Cyg1-12664 is a low eccentricity system, located d=360+/-22 pc away from us, with an orbital period of P=4.1287955(4) days, and an orbital inclination i=86.969+/-0.056 degrees. It is composed of two very different stars with an active G6 primary with Teff1=5560+/-160 K, M1=0.680+/-0.045 Msun, R1=0.799+/-0.017 Rsun, and a M3V secondary star with Teff2=3460+/-210 K, M2=0.376+/-0.017 Msun, and R2=0.3475+/-0.0081 Rsun. The primary star is an oversized and spotted active star, hotter than the stars in its mass range. The secondary is a cool star near the mass boundary for fully convective stars (M~0.35 Msun), whose parameters appear to be in agreement with low-mass stellar model.Comment: 18 pages, 15 figures, 15 table

    Potential-dependent competitive processes on platinum in acid solution in the presence of propargyl alcohol

    Get PDF
    The electroadsorption interactions between dilute propargyl alcohol and smooth platinum in 0.5 M H2SO4 at 25° C have been investigated at different potentials. When the platinum electrode is covered by H atoms the hydrogenation of propargyl alcohol takes place. Otherwise, when the platinum electrode is held at a potential located in the double-layer region, the electroadsorption of propargyl alcohol involves a disruptive electro-oxidation yielding strongly bound adsorbed residues. The latter can be electrodesorbed presumably as carbon dioxide and protons. This process occurs within the O-electroadsorption potential range. The complete residue electrodesorption requires several voltammetric cycles. Competition between the hydrogenation reaction and the disruptive electroadsorption process can be observed at potentials where the platinum surface is partially covered by H atoms.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    PG 1211+143: probing high frequency lags in a high mass AGN

    Full text link
    We present the timing analysis of the four archived XMM-Newton observations of PG 1211+143. The source is well-known for its spectral complexity, comprising a strong soft-excess and different absorption systems. Soft energy band (0.3-0.7 keV) lags are detected over all the four observations, in the frequency range \nu \lsim 6 \times 10^{-4} Hz, where hard lags, similar to those observed in black hole X-ray binaries, are usually detected in smaller mass AGN. The lag magnitude is energy-dependent, showing two distinct trends apparently connectable to the two flux levels at which the source is observed. The results are discussed in the context of disk- and/or corona-reprocessing scenarios, and of disk wind models. Similarities with the high-frequency negative lag of 1H 0707-495 are highlighted, and, if confirmed, they would support the hypothesis that the lag in PG 1211+143 represents the signature of the same underlying mechanism, whose temporal characteristics scale with the mass of the central object.Comment: 6 pages, 6 figures, accepted for publication in MNRAS Letter

    Factorizing the time evolution operator

    Full text link
    There is a widespread belief in the quantum physical community, and in textbooks used to teach Quantum Mechanics, that it is a difficult task to apply the time evolution operator Exp{-itH/h} on an initial wave function. That is to say, because the hamiltonian operator generally is the sum of two operators, then it is a difficult task to apply the time evolution operator on an initial wave function f(x,0), for it implies to apply terms operators like (a+b)^n. A possible solution of this problem is to factorize the time evolution operator and then apply successively the individual exponential operator on the initial wave function. However, the exponential operator does not directly factorize, i. e. Exp{a+b} is not equal to Exp{a}Exp{b}. In this work we present a useful procedure for factorizing the time evolution operator when the argument of the exponential is a sum of two operators, which obey specific commutation relations. Then, we apply the exponential operator as an evolution operator for the case of elementary unidimensional potentials, like the particle subject to a constant force and the harmonic oscillator. Also, we argue about an apparent paradox concerning the time evolution operator and non-spreading wave packets addressed previously in the literature.Comment: 24 pages; added references; one figure change

    Discovery of multiple Lorentzian components in the X-ray timing properties of the Narrow Line Seyfert 1 Ark 564

    Full text link
    We present a power spectral analysis of a 100 ksec XMM-Newton observation of the narrow line Seyfert 1 galaxy Ark~564. When combined with earlier RXTE and ASCA observations, these data produce a power spectrum covering seven decades of frequency which is well described by a power law with two very clear breaks. This shape is unlike the power spectra of almost all other AGN observed so far, which have only one detected break, and resemble Galactic binary systems in a soft state. The power spectrum can also be well described by the sum of two Lorentzian-shaped components, the one at higher frequencies having a hard spectrum, similar to those seen in Galactic binary systems. Previously we have demonstrated that the lag of the hard band variations relative to the soft band in Ark 564 is dependent on variability time-scale, as seen in Galactic binary sources. Here we show that the time-scale dependence of the lags can be described well using the same two-Lorentzian model which describes the power spectrum, assuming that each Lorentzian component has a distinct time lag. Thus all X-ray timing evidence points strongly to two discrete, localised, regions as the origin of most of the variability. Similar behaviour is seen in Galactic X-ray binary systems in most states other than the soft state, i.e. in the low-hard and intermediate/very high states. Given the very high accretion rate of Ark 564 the closest analogy is with the very high (intermediate) state rather than the low-hard state. We therefore strengthen the comparison between AGN and Galactic binary sources beyond previous studies by extending it to the previously poorly studied very high accretion rate regime.Comment: 11 pages, 11 figures, accepted for publication in MNRA

    A contribution to the mechanism of “reduced” CO<sub>2</sub> adsorbates electro-oxidation from combined spectroelectrochemical and voltammetric data

    Get PDF
    The nature of reduced CO2 adsorbates, as well as the mechanisms for their electro-oxidation on platinum, have been reviewed through the light of new experimental data obtained by cyclic voltammetry and by Fourier transform infrared reflectance spectroscopy. Three different “reduced” CO2 adsorbates are described as “‘ensembles”. It is suggested that they involve different extents of adsorbed entities, among which weakly bound and strongly bound hydrogen atoms play the most important role.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
    • 

    corecore