36 research outputs found
A Chaperonin Subunit with Unique Structures Is Essential for Folding of a Specific Substrate
Type I chaperonins are large, double-ring complexes present in bacteria (GroEL),
mitochondria (Hsp60), and chloroplasts (Cpn60), which are involved in mediating
the folding of newly synthesized, translocated, or stress-denatured proteins. In
Escherichia coli, GroEL comprises 14 identical subunits and
has been exquisitely optimized to fold its broad range of substrates. However,
multiple Cpn60 subunits with different expression profiles have evolved in
chloroplasts. Here, we show that, in Arabidopsis thaliana, the
minor subunit Cpn60β4 forms a heterooligomeric Cpn60 complex with
Cpn60α1 and Cpn60β1–β3 and is specifically required for the
folding of NdhH, a subunit of the chloroplast NADH dehydrogenase-like complex
(NDH). Other Cpn60β subunits cannot complement the function of Cpn60β4.
Furthermore, the unique C-terminus of Cpn60β4 is required for the full
activity of the unique Cpn60 complex containing Cpn60β4 for folding of NdhH.
Our findings suggest that this unusual kind of subunit enables the Cpn60 complex
to assist the folding of some particular substrates, whereas other dominant
Cpn60 subunits maintain a housekeeping chaperonin function by facilitating the
folding of other obligate substrates
Cell Differentiation and Morphogenesis Are Uncoupled in Arabidopsis raspberry Embryos.
We identified two Arabidopsis embryo mutants, designated as raspberry1 and raspberry2, by screening T-DNA-mutagenized Arabidopsis lines. Embryogenesis in these mutants is indistinguishable from that of wild-type plants until the late-globular stage, after which raspberry1 and raspberry2 embryos fail to undergo the transition to heart stage, remain globular shaped, and proliferate an enlarged suspensor region. raspberry1 and raspberry2 embryo-proper regions enlarge during embryogenesis, become highly vacuolate, and display prominent convex, or "raspberry-like" protuberances on their outer cell layers. In situ hybridization studies with several embryo cell-specific mRNA probes indicated that the raspberry1 and raspberry2 embryo-proper regions differentiate tissue layers in their correct spatial contexts and that the regulation of cell-specific genes within these layers is normal. Surprisingly, a similar spatial and temporal pattern of mRNA accumulation occurs within the enlarged suspensor region of raspberry1 and raspberry2 embryos, suggesting that a defect in embryo-proper morphogenesis can cause the suspensor to take on an embryo-proper-like state and differentiate a radial tissue-type axis. We conclude that cell differentiation can occur in the absence of both organ formation and morphogenesis during plant embryogenesis and that interactions occur between the embryo-proper and suspensor regions