15 research outputs found

    In Book: Neglected Zoonosis:Concern for one Health

    No full text
    Not AvailableDescribes about the anthrax disease in livestockNot Availabl

    In: Neglected Zoonosis:Concern for One Health

    No full text
    Not AvailableDescribes about the neglected zoonotic diseases in animalsNot Availabl

    BIOMIMETIC SYNTHESIS AND ANTIBACTERIAL PROPERTIES OF STRONTIUM OXIDE NANOPARTICLES USING OCIMUM SANCTUM LEAF EXTRACT

    No full text
     Objective: The investigation and synthesis of nanoparticles using green chemical methods is an emerging field due to ecologically derived materials. In the present study, the reaction under microwave irradiation technique is proposed for synthesizing the strontium oxide nanoparticles (SrO NPs) by reacting the strontium nitrate powder with Ocimum sanctum L. leaf extract followed by heat treatment at 500oC for 2 h.Methods: The crystalline nature, size, and morphological structure of the SrO powder sample were characterized by techniques such as powder X-ray diffraction (PXRD), scanning electron microscopy, ultraviolet (UV)-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and photoluminescence (PL) spectral analysis. To investigate the antibacterial properties of SrO NPs, pathogens such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella pneumonia, and Morganella morganii was tested in Mueller–Hinton disc diffusion method.Results: The particle size of the SrO NPs is calculated to be 42 nm using Debye–Scherrer equation. The SrO NPs exhibited absorption peak in the range of 250–350 nm centered at 274 nm in UV region. In addition, it is demonstrated that band gap energy was calculated to be 5.39 eV from Tauc's plot. The SrO NPs has shown the efficient antibacterial effect by inhibiting zone against Gram-negative bacteria.Conclusion: The main aim of the study is to synthesize cost-effective and eco-friendly green synthesis of SrO NPs from the OS (O. sanctum) leaf extract and their characterization. The mechanism for the formation of SrO NPs in the presence of eugenol as reducing agent is also discussed. The present green chemical approach using plant-based materials for the synthesis of nanoparticles enhances the eco-friendliness, compatibility, effectiveness, and reduces the toxicity

    BIOMIMETIC SYNTHESIS AND ANTIBACTERIAL PROPERTIES OF STRONTIUM OXIDE NANOPARTICLES USING OCIMUM SANCTUM LEAF EXTRACT

    No full text
     Objective: The investigation and synthesis of nanoparticles using green chemical methods is an emerging field due to ecologically derived materials. In the present study, the reaction under microwave irradiation technique is proposed for synthesizing the strontium oxide nanoparticles (SrO NPs) by reacting the strontium nitrate powder with Ocimum sanctum L. leaf extract followed by heat treatment at 500oC for 2 h.Methods: The crystalline nature, size, and morphological structure of the SrO powder sample were characterized by techniques such as powder X-ray diffraction (PXRD), scanning electron microscopy, ultraviolet (UV)-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and photoluminescence (PL) spectral analysis. To investigate the antibacterial properties of SrO NPs, pathogens such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella pneumonia, and Morganella morganii was tested in Mueller–Hinton disc diffusion method.Results: The particle size of the SrO NPs is calculated to be 42 nm using Debye–Scherrer equation. The SrO NPs exhibited absorption peak in the range of 250–350 nm centered at 274 nm in UV region. In addition, it is demonstrated that band gap energy was calculated to be 5.39 eV from Tauc's plot. The SrO NPs has shown the efficient antibacterial effect by inhibiting zone against Gram-negative bacteria.Conclusion: The main aim of the study is to synthesize cost-effective and eco-friendly green synthesis of SrO NPs from the OS (O. sanctum) leaf extract and their characterization. The mechanism for the formation of SrO NPs in the presence of eugenol as reducing agent is also discussed. The present green chemical approach using plant-based materials for the synthesis of nanoparticles enhances the eco-friendliness, compatibility, effectiveness, and reduces the toxicity

    Not Available

    No full text
    Not AvailableDescribes about the sheep and goat pox in HindiNot Availabl

    Not Available

    No full text
    Not AvailableAim: This study aimed to characterize sheeppox virus (SPPV) using the P32 gene of the Capripoxvirus (CaPVs). Materials and Methods: Clinical samples of skin, scabs, and nasal swab from suspected outbreaks Horalagallu (n=13) and Gerahalli (n=11) at Ramanagara district in Karnataka were collected. All the samples were initially subjected to genusspecific diagnostic polymerase chain reaction (PCR). The pooled clinical samples from each outbreak were also subjected to virus isolation. The isolates were confirmed by CaPVs genotyping PCR targeting the full-length P32 gene, followed by sequencing and phylogenetic analysis. Results: The clinical signs and lesions varied from mild to severe degree with no specificity between age and sex. Specific cytopathic changes in cell morphology were observed in infected Vero cells from both outbreaks, which were confirmed by PCR. The complete P32 gene from two outbreaks was successfully amplified with the expected amplicon size of 1006bp. The sequencing and phylogenetic analysis revealed that both the outbreaks were due to SPPV and shared high similarity with published SPPVs from Karnataka and other parts of India. Conclusion: The current study showed that complete P32 gene-based genotypic PCR assay can be used for genetic characterization and molecular epidemiology of both sheeppox and goatpox diseases and also to differentiate the causative agents. The sequence analysis revealed 100% similarity among the two outbreak isolates suggesting the same strain of the virus and common source of infection for the outbreaks.Not Availabl

    Not Available

    No full text
    Not AvailableCanine babesiosis a tick-borne haemoprotozoan disease of dogs is of significance globally due to its rapid spread. A precise confirmatory diagnosis is required to curtail the rapid spread of infection. Our study described the evaluation of recombinant BgSA3 protein based indirect ELISA for sero-diagnosis and sero-surveillance of Babesia gibsoni infection in dogs. A partial BgSA3 gene segment 1921 bp of B. gibsoni encoding for recombinant truncated BgSA3 75 k Da protein devoid of predicted signal peptide 23 aa at N-terminus and transmembrane region 20 aa at C-terminus, was expressed in E. coli using a pET28a positive vector. The rBgSA3 protein purified under native conditions using Ni-NTA super flow cartridge was confirmed by SDS-PAGE and Western blotting using sera from dogs infected/uninfected with B. gibsoni, and erythrocyte lysate/plasma from infected/uninfected dogs. The rBgSA3 protein was specific only to B. gibsoni antibodies but did not react with uninfected sera. Further, rBgSA3 protein was evaluated for sero-diagnosis/sero-surveillance using Indirect-ELISA format. There was no cross reactivity to B. vogeli, E. canis, H. canis and D. repens infected dogs serum samples. The diagnostic sensitivity and specificity of rBgSA3 based I-ELISA was found to be 86.4 and 93.1 % respectively, in comparison with cytb based PCR assay. Additionally, rBgSA3-ELISA evaluated using survey serum samples n =287, detected 11.85 percentage samples as positive. In conclusion, B. gibsoni infection, an emerging disease is prevalent in the present study area and the standardized rBgSA3 protein based indirect-ELISA was found to be a specific and sensitive test for large scale sero-diagnosis and sero-surveillance of B. gibsoni infection in dog.Not Availabl

    Molecular characterization of sheeppox virus from outbreaks in Karnataka, India

    Get PDF
    Aim: This study aimed to characterize sheeppox virus (SPPV) using the P32 gene of the Capripoxvirus (CaPVs). Materials and Methods: Clinical samples of skin, scabs, and nasal swab from suspected outbreaks Horalagallu (n=13) and Gerahalli (n=11) at Ramanagara district in Karnataka were collected. All the samples were initially subjected to genus-specific diagnostic polymerase chain reaction (PCR). The pooled clinical samples from each outbreak were also subjected to virus isolation. The isolates were confirmed by CaPVs genotyping PCR targeting the full-length P32 gene, followed by sequencing and phylogenetic analysis. Results: The clinical signs and lesions varied from mild to severe degree with no specificity between age and sex. Specific cytopathic changes in cell morphology were observed in infected Vero cells from both outbreaks, which were confirmed by PCR. The complete P32 gene from two outbreaks was successfully amplified with the expected amplicon size of 1006bp. The sequencing and phylogenetic analysis revealed that both the outbreaks were due to SPPV and shared high similarity with published SPPVs from Karnataka and other parts of India. Conclusion: The current study showed that complete P32 gene-based genotypic PCR assay can be used for genetic characterization and molecular epidemiology of both sheeppox and goatpox diseases and also to differentiate the causative agents. The sequence analysis revealed 100% similarity among the two outbreak isolates suggesting the same strain of the virus and common source of infection for the outbreaks

    Not Available

    No full text
    Not AvailableSheeppox and goatpox are highly contagious viral diseases of small ruminants causing severe economic losses to the livestock farmers. The disease is enzootic in Asia including India, Middle East and African countries. In the present study, a total of 28 isolates from twenty five sheeppox and goatpox disease outbreaks were phylogenetically analyzed based on P32 gene/protein along with homology modeling and docking using heparan sulfate and UDP-glucose. Three distinct lineage-specific clusters as per their host origin were recorded. Multiple sequence analysis of P32 gene revealed that genetically similar sheeppox virus (SPPV) and goatpox virus (GTPV) strains are circulating in India. Phylogenetically, Lumpy skin disease (LSDV) and SPPV had a closer genetic relationship than GTPV. Comparative sequence alignment indicated conservation of various motifs such as glycosaminoglycan (GAG), chemokine like motif (CX3C) and Asp-Glu-any other residue-Asp (D/ExD), as well as viral specific signature residues in SPPV and GTPV isolates. Structurally, P32 protein of SPPV and GTPV with mixed α helices and β sheets resembled with crystal structure of homologue vaccinia virus H3L protein. Docking studies in P32 protein of SPPV and GTPV revealed conserved binding pattern with heparan sulfate which is involved in the virus attachment and varied glycosyltransferase fold with UDP-glucose. These findings may help in development of suitable vaccines/diagnostics and therapeutics against capripoxviruses.Not Availabl

    Not Available

    No full text
    Not AvailableSheep pox is an endemic and economically important viral disease of small ruminants in India. The present study describes detailed investigation of sheep pox disease outbreak in fattening lambs. The disease outbreak occurred in month of January in a village of Mandya District of Karnataka state in the organized farm. Despite the presence of goats in the same flock, the disease affected sheep only. The clinical signs and post-mortem findings were suggestive of malignant form of sheep pox, which is more frequently recorded in lambs. The duration of disease was 30 days with morbidity and mortality rates of 50.91% and 19.09%, respectively. The capripox virus was identified in the clinical and morbid samples by partial P32 gene based PCR. The sheep pox virus was confirmed by virus isolation and sequencing of full length P32 gene. The sheep poxvirus isolate sequence from the present outbreak, genetically resembled with sheep poxvirus isolates from India and other countries. In conclusion, based on clinical, isolation, PCR and sequence analysis the outbreak was attributed to sheep poxvirus, which highlights the need of at least two separate vaccines for control of sheep and goat pox disease.Not Availabl
    corecore