16 research outputs found

    Prenylated phenolics as promising candidates for combination antibacterial therapy: morusin and kuwanon G

    Get PDF
    Combination of antibiotics with natural products is a promising strategy for potentiating antibiotic activity and overcoming antibiotic resistance. The purpose of the present study was to investigate whether morusin and kuwanon G, prenylated phenolics in Morus species, have the ability to enhance antibiotic activity and reverse antibiotic resistance in Staphylococcus aureus and Staphylococcus epidermidis. Commonly used antibiotics (oxacillin, erythromycin, gentamicin, ciprofloxacin, tetracycline, clindamycin) were selected for the combination studies. Checkerboard and time-kill assays were used to investigate potential bacteriostatic and bactericidal synergistic interactions, respectively between morusin or kuwanon G and antibiotics. According to both fractional inhibitory concentration index and response surface models, twenty combinations (14 morusin-antibiotic combinations, six kuwanon G-antibiotic combinations) displaying bacteriostatic synergy were identified, with 4–512-fold reduction in the minimum inhibitory concentration values of antibiotics in combination. Both morusin and kuwanon G reversed oxacillin resistance of methicillin-resistant Staphylococcus aureus. In addition, morusin reversed tetracycline resistance of Staphylococcus epidermidis. At half of the minimum inhibitory concentrations, combinations of morusin with oxacillin or gentamicin showed bactericidal synergy against methicillin-resistant Staphylococcus aureus. Fluorescence and differential interference contrast microscopy and scanning electron microscopy showed an increase in the membrane permeability and massive leakage of cellular content in methicillin-resistant Staphylococcus aureus exposed to morusin or kuwanon G. Overall, our findings strongly indicate that both prenylated compounds are good candidates for the development of novel antibacterial combination therapies

    Preliminary study on the impact of non-thermal plasma activated water on the quality of Triticum aestivum L. cv. Glosa sprouts

    Get PDF
    The present study aimed to investigate the effects of non-thermal plasma-activated water (PAW) on Triticum aestivum L. cv. Glosa sprouts. Two types of PAW were generated by exposing distilled water to a high-voltage electric discharge. Wheat caryopses were treated either with PAW1 (25 mg/L NO3 −, 4 mg/L NO2 −, and 6 mg/L H2O2 ) or PAW2 (35 mg/L NO3 −, 5 mg/L NO2 −, and 7.5 mg/L H2O2 ) for 8 days, with samples being collected at days 1, 2, 3, and 8. The germination rate, growth parameters, protein, photosynthetic pigments, total phenolic contents, antioxidant activity of free and bound phenolic fractions, and activity of antioxidant enzymes were evaluated. Both PAW1 and PAW2 had positive effects on Triticum aestivum L. cv. Glosa sprouts. PAW2 had a better impact on sprouts with respect to growth parameters, free phenolic content, and antioxidant activity of the free phenolic fraction (day 3), the accumulation of proteins, and photosynthetic pigments (day 8). In conclusion, exposure to PAW increases the quality of Triticum aestivum L. cv. Glosa sprouts. Further optimization of PAW treatment is required for the most favorable impact on the accumulation of biomass and health-promoting compounds in sprouts

    Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions

    No full text
    Pectins are a part of daily diet as well as food additives that are indigestible polysaccharides by human enzymes, however, they can be easily degraded by gut bacteria with the production of short chain fatty acids (SCFAs). Knowledge of pectin gut homeostasis and further how pectin affect gut bacterial communities is insufficient and limited. This review focuses on providing the whole story of how pectin functions as prebiotics in the gut. Understanding the interplay between functional and immunological responses inside animal or human gut as influenced by pectin in diets is provided. The interaction between pectin and gut microbiota is presented from both sides, in terms of how pectin affects gut microbiome and or the fermentation products produced in response by gut bacteria. This knowledge can be used to define preferred dietary pectins, targeting beneficial bacteria, and favoring balanced microbiota communities in the gut to maximize pectins’ health benefits

    The Cardiovascular Effects of Cocoa Polyphenols—An Overview

    No full text
    Cocoa is a rich source of high-quality antioxidant polyphenols. They comprise mainly catechins (29%–38% of total polyphenols), anthocyanins (4% of total polyphenols) and proanthocyanidins (58%–65% of total polyphenols). A growing body of experimental and epidemiological evidence highlights that the intake of cocoa polyphenols may reduce the risk of cardiovascular events. Beyond antioxidant properties, cocoa polyphenols exert blood pressure lowering activity, antiplatelet, anti-inflammatory, metabolic and anti-atherosclerotic effects, and also improve endothelial function. This paper reviews the role of cocoa polyphenols in cardiovascular protection, with a special focus on mechanisms of action, clinical relevance and correlation between antioxidant activity and cardiovascular health

    STUDIES ON ANTIOXIDANT, ANTIHYPERGLYCEMIC AND ANTIMICROBIAL EFFECTS OF EDIBLE MUSHROOMS BOLETUS EDULIS AND CANTHARELLUS CIBARIUS

    No full text
    The study evaluated the antioxidant, antihyperglycemic and antimicrobial effects of both ethanolic and hydromethanolic extracts of the fruiting bodies of wild edible mushrooms Boletus edulis (penny bun) and Cantharellus cibarius (golden chanterelle) sampled in Poiana Stampei (Suceava county, Romania). The total phenolic contents of extracts were also determined. Boletus edulis hydromethanolic extract showed the highest total phenolic content (72.78±0.29 mg/g). This extract was also the most active as scavenger of DPPH and ABTS radicals (EC50=151.44±0.85 and 65.4±0.4 µg/mL, respectively) and reducing agent (EC50=46.77±0.34 µg/mL). Cantharellus cibarius ethanolic extract showed high ferrous ion chelating (EC50=82.9±0.6 µg/mL), 15-lipoxygenase (EC50=236.7±1.5 µg/mL) and α-glucosidase (EC50=9.77±0.06 μg/mL) inhibitory activities. For both mushrooms, the ethanolic extracts were more active against Staphylococcus aureus ATCC 25923 than the hydromethanolic ones. The antioxidant and antihyperglycemic effects revealed in this study support further investigations for a possible valorization of both mushrooms in the dietary supplement and pharmaceutical industries

    Chemical Profile and Bioactivity Evaluation of <i>Salvia</i> Species from Eastern Europe

    No full text
    The Salvia genus comprises about 1000 species endowed with medicinal, aromatic, cosmetic, and ornamental applications. Even though the genus is one of the most-studied taxa of the Lamiaceae family, data on the chemical composition and biological properties of certain locally used Salvia species are still scarce. The present work aimed to evaluate the phytochemical profile and antimicrobial, antioxidant, and cytotoxic potential of ten Salvia species that grow in Eastern Europe (e.g., the Republic of Moldova). LC-HRMS/MS metabolite profiling allowed for the annotation of 15 phenolic and organic acids, 18 flavonoids, 19 diterpenes, 5 sesterpenes, and 2 triterpenes. Multivariate analysis (e.g., principal component analysis, hierarchical cluster analysis) revealed that S. austriaca, S. nutans, and S. officinalis formed individual clusters, whereas the remaining species had a similar composition. S. officinalis showed the highest activity against Staphylococcus aureus and Streptococcus pneumoniae (MIC = 0.625 mg/mL). As evaluated in DPPH, ABTS, and FRAP assays, S. officinalis was one of the most potent radical scavenging and metal-reducing agents (CE50 values of 25.33, 8.13, and 21.01 μg/mL, respectively), followed by S. verticillata, S. sclarea, S. kopetdaghensis, S. aethiopis, and S. tesquicola. Pearson correlation analysis revealed strong correlations with rosmarinic acid, luteolin-O-glucuronide, and hydroxybenzoic acid. When the cytotoxic activity was evaluated in human breast carcinoma MCF-7 and MDA-MB-231 cells, no significant reduction in cell viability was observed over the concentrations ranging from 25 and 100 μg/mL. The results confirm the potential use of understudied Salvia species as promising sources of antioxidant compounds for developing novel pharmaceutical, nutraceutical, or cosmeceutical products

    Preliminary Study on the Impact of Non-Thermal Plasma Activated Water on the Quality of <i>Triticum aestivum</i> L. cv. Glosa Sprouts

    No full text
    The present study aimed to investigate the effects of non-thermal plasma-activated water (PAW) on Triticum aestivum L. cv. Glosa sprouts. Two types of PAW were generated by exposing distilled water to a high-voltage electric discharge. Wheat caryopses were treated either with PAW1 (25 mg/L NO3−, 4 mg/L NO2−, and 6 mg/L H2O2) or PAW2 (35 mg/L NO3−, 5 mg/L NO2−, and 7.5 mg/L H2O2) for 8 days, with samples being collected at days 1, 2, 3, and 8. The germination rate, growth parameters, protein, photosynthetic pigments, total phenolic contents, antioxidant activity of free and bound phenolic fractions, and activity of antioxidant enzymes were evaluated. Both PAW1 and PAW2 had positive effects on Triticum aestivum L. cv. Glosa sprouts. PAW2 had a better impact on sprouts with respect to growth parameters, free phenolic content, and antioxidant activity of the free phenolic fraction (day 3), the accumulation of proteins, and photosynthetic pigments (day 8). In conclusion, exposure to PAW increases the quality of Triticum aestivum L. cv. Glosa sprouts. Further optimization of PAW treatment is required for the most favorable impact on the accumulation of biomass and health-promoting compounds in sprouts
    corecore