4 research outputs found

    Future Precision Neutrino Oscillation Experiments and Theoretical Implications

    Full text link
    Future neutrino oscillation experiments will lead to precision measurements of neutrino mass splittings and mixings. The flavour structure of the lepton sector will therefore at some point become better known than that of the quark sector. This article discusses the potential of future oscillation experiments on the basis of detailed simulations with an emphasis on experiments which can be done in about ten years. In addition, some theoretical implications for neutrino mass models will be briefly discussed.Comment: Talk given at Nobel Symposium 2004: Neutrino Physics, Haga Slott, Enkoping, Sweden, 19-24 Aug 200

    Underground operation of the ICARUS T600 LAr-TPC: first results

    Full text link
    Open questions are still present in fundamental Physics and Cosmology, like the nature of Dark Matter, the matter-antimatter asymmetry and the validity of the particle interaction Standard Model. Addressing these questions requires a new generation of massive particle detectors exploring the subatomic and astrophysical worlds. ICARUS T600 is the first large mass (760 ton) example of a novel detector generation able to combine the imaging capabilities of the old famous "bubble chamber" with an excellent energy measurement in huge electronic detectors. ICARUS T600 now operates at the Gran Sasso underground laboratory, studying cosmic rays, neutrino oscillation and proton decay. Physical potentialities of this novel telescope are presented through few examples of neutrino interactions reconstructed with unprecedented details. Detector design and early operation are also reported.Comment: 14 pages, 8 figures, 2 tables. Submitted to Jins

    Effect of Collective Flavor Oscillations on the Diffuse Supernova Neutrino Background

    Full text link
    Collective flavor oscillations driven by neutrino-neutrino self interaction inside core-collapse supernovae have now been shown to bring drastic changes in the resultant neutrino fluxes. This would in turn significantly affect the diffuse supernova neutrino background (DSNB), created by all core-collapse supernovae that have exploded in the past. In view of these collective effects, we re-analyze the potential of detecting the DSNB in currently running and planned large-scale detectors meant for detecting both electron neutrinos and antineutrinos. The next generation detectors should be able to observe DSNB fluxes. Under certain conducive conditions, one could learn about neutrino parameters. For instance, it might be possible to determine the neutrino mass hierarchy, even if theta_{13} is almost zero.Comment: Ver3 (24 pages, 4 figures and 4 tables): Reference added. Figure 1 corrected. Misprints corrected. Acknowledgment added. No changes in results. Supercedes the version published in JCA
    corecore