18 research outputs found

    Electrophysiological Characterization of The Cerebellum in the Arterially Perfused Hindbrain and Upper Body of The Rat

    Get PDF
    In the present study, a non-pulsatile arterially perfused hindbrain and upper body rat preparation is described which is an extension of the brainstem preparation reported by Potts et al., (Brain Res Bull 53(1):59–67), 1. The modified in situ preparation allows study of cerebellar function whilst preserving the integrity of many of its interconnections with the brainstem, upper spinal cord and the peripheral nervous system of the head and forelimbs. Evoked mossy fibre, climbing fibre and parallel fibre field potentials and EMG activity elicited in forelimb biceps muscle by interpositus stimulation provided evidence that both cerebellar inputs and outputs remain operational in this preparation. Similarly, the spontaneous and evoked single unit activity of Purkinje cells, putative Golgi cells, molecular interneurones and cerebellar nuclear neurones was similar to activity patterns reported in vivo. The advantages of the preparation include the ability to record, without the complications of anaesthesia, stabile single unit activity for extended periods (3 h or more), from regions of the rat cerebellum that are difficult to access in vivo. The preparation should therefore be a useful adjunct to in vitro and in vivo studies of neural circuits underlying cerebellar contributions to movement control and motor learning

    Behavioural Significance of Cerebellar Modules

    Get PDF
    A key organisational feature of the cerebellum is its division into a series of cerebellar modules. Each module is defined by its climbing input originating from a well-defined region of the inferior olive, which targets one or more longitudinal zones of Purkinje cells within the cerebellar cortex. In turn, Purkinje cells within each zone project to specific regions of the cerebellar and vestibular nuclei. While much is known about the neuronal wiring of individual cerebellar modules, their behavioural significance remains poorly understood. Here, we briefly review some recent data on the functional role of three different cerebellar modules: the vermal A module, the paravermal C2 module and the lateral D2 module. The available evidence suggests that these modules have some differences in function: the A module is concerned with balance and the postural base for voluntary movements, the C2 module is concerned more with limb control and the D2 module is involved in predicting target motion in visually guided movements. However, these are not likely to be the only functions of these modules and the A and C2 modules are also both concerned with eye and head movements, suggesting that individual cerebellar modules do not necessarily have distinct functions in motor control

    Precise matching of olivo-cortical divergence and corticonuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum

    No full text
    The paravermal cerebellar cortex contains three spatially separate zones (the C1, C3 and Y zones) which form a functionally coupled system involved in the control of voluntary limb movements. A series of 'modules' has been postulated, each defined by a set of olivary neurons with similar receptive fields, the cortical microzones innervated by these neurons and the group of deep cerebellar nuclear neurons upon which the microzones converge. A key feature of this modular organization is a correspondence between cortical input and output, irrespective of the zonal identity of the microzone. This was tested directly using a combined electrophysiological and bi-directional tracer technique in barbiturate-anaesthetized cats. During an initial operation, small injections of a mix of retrograde and anterograde tracer material (red beads combined with Fluoro-Ruby or green beads combined with biotinylated dextran amine or Fluoro-Emerald) were made into areas of the medial C1 and medial C3 zones in cerebellar lobule V characterized by olivo-cerebellar input from the ventral forelimb. The inferior olive and the deep cerebellar nuclei were then scrutinized for retrogradely labelled cells and anterogradely labelled axon terminals, respectively. For individual experiments, the degree of C1-C3 zone terminal field overlap in the nucleus interpositus anterior was plotted as a function of either the regional overlap of single-labelled cells or the proportion of double-labelled cells in the dorsal accessory olive. The results were highly positively correlated, indicating that cortico-nuclear convergence between parts of the two zones is in close proportion to the corresponding olivo-cerebellar divergence, entirely consistent with the modular hypothesis

    Gating of cutaneous input to cerebellar climbing fibres during a reaching task in the cat

    No full text
    1. Task-dependent modulation of cutaneous input to climbing fibres projecting to the C1, C2 and C3 zones in the cerebellar paravermal lobule V was investigated in awake cats during performance of a reaching task. 2. Climbing fibre responses resulting from low intensity (non-noxious) electrical stimulation of the ipsilateral superficial radial nerve were recorded as extracellular field potentials in the cerebellar cortex using chronically implanted microwires. 3. Response size, measured as the time-voltage integral of the evoked field potential, was assessed during three phases of the reaching movement, reaction, reach and grasp, and compared with the response size at rest. 4. At C1 and C3 zone recording sites response size was usually reduced during the task (7/10 sites). The reduction was most pronounced in the grasp phase, occasionally accompanied by a smaller reduction in the reach and reaction phases. In one case an enhancement was found in the reach phase. 5. Response size was also modulated during the task at four of six C2 zone recording sites. However, the results were mixed. In three cases the modulation resembled the pattern at C1/C3 sites with the responses being reduced in the grasp phase accompanied on occasion by a lesser reduction in the reach phase. In the remaining case there was an enhancement during grasp. In this case and one other there was also an enhancement during the reaction phase. 6. The findings indicate significant gating of cutaneous input to climbing fibres projecting to the C1, C2 and C3 zones during reaching movements, while the variability between recording sites suggests functional differences, both between and within zones

    Cerebellar cortical organization: a one-map hypothesis

    No full text

    Cerebellar cortical organization: a one-map hypothesis

    No full text
    corecore