61 research outputs found

    Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation

    Get PDF
    SummaryObjectiveTo correlate long-term clinical outcome and the results of morphological as well as advanced biochemical magnetic resonance imaging (MRI) techniques [T2-mapping, glycosaminoglycan chemical exchange saturation transfer (gagCEST), sodium-23-imaging] in patients after autologous osteochondral transplantation (AOT) in knee joints.MethodNine AOT patients (two female and seven male; median age, 49) had clinical [International Knee Documentation Committee (IKDC), modified Lysholm, visual analog scale (VAS)] and radiological long-term follow-up examinations at a median of 7.9 years (inter-quartile range, 7.7–8.2). Standard morphological MRI and T2-mapping of cartilage were performed on a 3 T MR unit. Biochemical imaging further included sodium-23-imaging and chemical exchange saturation transfer (CEST) imaging at 7 T. The Magnetic resonance Observation of CArtilage Repair Tissue (MOCART) score was used for quantitative assessment of morphological MRI.ResultsClinical outcome was good with a median modified Lysholm score of 90. Median VAS revealed 1.0 and median MOCART score 75 points. The difference between native and repair cartilage was statistically significant for all three biochemical imaging techniques. The strongest correlation was found between the results of the advanced biochemical imaging methods sodium-23 and CEST [ρ = 0.952, 95% confidence interval (CI): (0.753; 0.992)]. Comparing the results from morphological and biochemical imaging, a correlation was found between MOCART score and CEST ratio [ρ = −0.749, 95% CI: (−0.944; −0.169)]. Comparing the results from clinical scores with MRI, a correlation between modified Lysholm and T2-mapping [ρ = −0.667, 95% CI: (−0.992; −0.005)] was observed.ConclusionLong-term clinical outcome in patients 7.9 years after AOT was good, but did not correlate with morphological and biochemical imaging results except for T2-mapping

    Cartilage repair of the ankle: first results of T2 mapping at 7.0 T after microfracture and matrix associated autologous cartilage transplantation

    Get PDF
    SummaryBackgroundBoth microfracture (MFX) and matrix associated autologous cartilage transplantation (MACT) are currently used to treat cartilage defects of the talus. T2 mapping of the ankle at 7 T has the potential to assess the collagen fibril network organization of the native hyaline cartilage and of the repair tissue (RT). This study provides first results regarding the properties of cartilage RT after MFX (mean follow-up: 113.8 months) and MACT (65.4 months).MethodsA multi-echo spin-echo sequence was used at 7 T to assess T2 maps in 10 volunteer cases, and in 10 cases after MFX and MACT each. Proton weighted morphological images and clinical data were used to ensure comparable baseline criteria.ResultsA significant zonal variation of T2 was found in the volunteers. T2 of the superficial and the deep layer was 39.3 ± 5.9 ms and 21.1 ± 3.1 ms (zonal T2 index calculated by superficial T2/deep T2: 1.87 ± 0.2, P < 0.001). In MFX, T2 of the reference cartilage was 37.4 ± 5.0 ms and 25.3 ± 3.5 ms (1.51 ± 0.3, P < 0.001). In the RT, T2 was 43.4 ± 10.5 ms and 36.3 ± 7.7 ms (1.20 ± 0.2, P = 0.009). In MACT, T2 of the reference cartilage was 39.0 ± 9.1 ms and 27.1 ± 6.6 ms (1.45 ± 0.2, P < 0.001). In the RT, T2 was 44.6 ± 10.4 ms and 38.6 ± 7.3 ms (1.15 ± 0.1, P = 0.003). The zonal RT T2 variation differed significantly from the reference cartilage in both techniques (MFX: P = 0.004, MACT: P = 0.001).ConclusionT2 mapping at 7 T allows for the quantitative assessment of the collagen network organization of the talus. MACT and MFX yielded RT with comparable T2 properties

    The techno-ecological practice as the politics of ontological coalitions

    Get PDF
    The paper focuses on the art projects aimed at visualizing (grasping) the physical or biological phenomena through interfaces and / or installations designed specifically for such purpose. Such works often mirror the post-­digital condition of our time where the digital technologies constitute the common background for everyday activities, no longer having the allure of "new" and "exciting" (Berry, Dieter et al., 2015). In this process, both the networked technologies of wireless communication and the act of crossing the boundaries between the digital and the physical play the crucial role as the post-­digital networked imagery increasingly becomes directly connected to the physical environment. I would like to ponder on the questions of processuality and relationality involved in such instances where the complexity of the hybrid works of art clearly transgresses the paradigm of representationalism (Thrift, 2008;ÍŸ Anderson and Harrison, 2010;ÍŸ Kember and Zylinska, 2012). The particular attention is given to the fact that such artworks bond different ontological realms (discursive, physical, digital) and different agents (human and non-­human, carbon-­based and software-­based) forging “ontological coalitions” (Malafouris, 2013). Throughout the article the mutlirealist and relational perspective is offered, inspired by the propositions of Gilbert Simondon and Etienne Souriau. Based on the research project supported by National Science Centre Poland ("The aesthetics of post-­digital imagery: between new materialism and object-­oriented philosophy", 2016/21/B/HS2/00746)

    Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor

    Get PDF
    Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this work was to maximize the production of Aspergillus ibericus lipase under SSF of olive pomace (OP) and wheat bran (WB), evaluating the effect on lipase production of C/N ratio, lipids, phenols, content of sugars of substrates and nitrogen source addition. Moreover, the implementation of the SSF process in a packed-bed bioreactor and the improvement of lipase extraction conditions were assessed. Low C/N ratios and high content of lipids led to maximum lipase production. Optimum SSF conditions were achieved with a C/N mass ratio of 25.2 and 10.2% (w/w) lipids in substrate, by the mixture of OP:WB (1:1) and supplemented with 1.33% (w/w) (NH4)2SO4. Studies in a packed-bed bioreactor showed that the lower aeration rates tested prevented substrate dehydration, improving lipase production. In this work, the important role of Triton X-100 on lipase extraction from the fermented solid substrate has been shown. A final lipase activity of 223 ± 5 U g1 (dry basis) was obtained after 7 days of fermentation.Felisbela Oliveira acknowledges the ïŹnancial support from Fundação para a CiĂȘncia e Tecnologia (FCT) of Portugal through grant SFRH/BD/87953/2012. JosĂ© Manuel Salgado was supported by grant CEB/N2020–INV/01/2016 from Project ‘‘BIOTECNORTE-Underpinning Biotechnology to foster the north of Portugal bioeconomy’’ (NORTE-01-0145-FEDER-000004). Luı ÂŽs Abrunhosa was supported by grant UMINHO/BPD/51/2015 from project UID/BIO/04469/2013 ïŹnanced by FCT/MEC (OE). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER006684) and BioTecNorte operation (NORTE-01-0145-FEDER000004) funded by the European Regional Development Fund under the scope of Norte2020–Programa Operacional Regional do Norte. Noelia PĂ©rez-RodrĂ­guez acknowledges the ïŹnancial support of FPU fellowship from the Spanish Ministry of Education, Culture and Sports. The authors thank the Spanish Ministry of Economy and Competitiveness for the ïŹnancial support of this work (Project CTQ2015-71436-C2-1-R), which has partial ïŹnancial support from the FEDER funds of the European Union.info:eu-repo/semantics/publishedVersio

    Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods

    Get PDF
    With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage

    Vienna Morphological Achilles Tendon Score - VIMAT-Score

    No full text

    Risk Factors For Reinfection In Patients With Septic Arthritis

    No full text
    • 

    corecore