3 research outputs found

    SIC~POVMs and Clifford groups in prime dimensions

    Full text link
    We show that in prime dimensions not equal to three, each group covariant symmetric informationally complete positive operator valued measure (SIC~POVM) is covariant with respect to a unique Heisenberg--Weyl (HW) group. Moreover, the symmetry group of the SIC~POVM is a subgroup of the Clifford group. Hence, two SIC~POVMs covariant with respect to the HW group are unitarily or antiunitarily equivalent if and only if they are on the same orbit of the extended Clifford group. In dimension three, each group covariant SIC~POVM may be covariant with respect to three or nine HW groups, and the symmetry group of the SIC~POVM is a subgroup of at least one of the Clifford groups of these HW groups respectively. There may exist two or three orbits of equivalent SIC~POVMs for each group covariant SIC~POVM, depending on the order of its symmetry group. We then establish a complete equivalence relation among group covariant SIC~POVMs in dimension three, and classify inequivalent ones according to the geometric phases associated with fiducial vectors. Finally, we uncover additional SIC~POVMs by regrouping of the fiducial vectors from different SIC~POVMs which may or may not be on the same orbit of the extended Clifford group.Comment: 30 pages, 1 figure, section 4 revised and extended, published in J. Phys. A: Math. Theor. 43, 305305 (2010

    Framed Hilbert space: hanging the quasi-probability pictures of quantum theory

    Full text link
    Building on earlier work, we further develop a formalism based on the mathematical theory of frames that defines a set of possible phase-space or quasi-probability representations of finite-dimensional quantum systems. We prove that an alternate approach to defining a set of quasi-probability representations, based on a more natural generalization of a classical representation, is equivalent to our earlier approach based on frames, and therefore is also subject to our no-go theorem for a non-negative representation. Furthermore, we clarify the relationship between the contextuality of quantum theory and the necessity of negativity in quasi-probability representations and discuss their relevance as criteria for non-classicality. We also provide a comprehensive overview of known quasi-probability representations and their expression within the frame formalism.Comment: 46 pages, 1 table, contains a review of finite dimensional quasi-probability function
    corecore