251 research outputs found

    Polymorphism in TGFB1 is associated with worse non-relapse mortality and overall survival after stem cell transplantation with unrelated donors.

    Get PDF
    Transforming growth factor beta-1, encoded by the TGFB1 gene, is a cytokine that plays a central role in many physiological and pathogenic processes. We have sequenced TGFB1 regulatory region and assigned allelic genotypes in a large cohort of hematopoietic stem cell transplantation patients and donors. In this study, we analyzed 522 unrelated donor-patient pairs and examined the combined effect of all the common polymorphisms in this genomic region. In univariate analysis, we found that patients carrying a specific allele, 'p001', showed significantly reduced overall survival (5-year overall survival 30.7% for p001/ p001 patients vs. 41.6% others; P=0.032) and increased non-relapse mortality (1-year nonrelapse mortality: 39.0% vs. 25.4%; P=0.039) after transplantation. In multivariate analysis, the presence of a p001/ p001 genotype in patients was confirmed as an independent factor for reduced overall survival [hazard ratio=1.53 (1.04-2.24); P=0.031], and increased non-relapse mortality [hazard ratio=1.73 (1.06-2.83); P=0.030]. In functional experiments we found a trend towards a higher percentage of surface transforming growth factor beta-1-positive regulatory T cells after activation when the cells had a p001 allele (P=0.07). Higher or lower production of transforming growth factor beta-1 in the inflammatory context of hematopoietic stem cell transplantation may influence the development of complications in these patients. Findings indicate that TGFB1 genotype could potentially be of use as a prognostic factor in hematopoietic stem cell transplantation risk assessment algorithms

    European LeukemiaNet laboratory recommendations for the diagnosis and management of chronic myeloid leukemia

    Get PDF
    From the laboratory perspective, effective management of patients with chronic myeloid leukemia (CML) requires accurate diagnosis, assessment of prognostic markers, sequential assessment of levels of residual disease and investigation of possible reasons for resistance, relapse or progression. Our scientific and clinical knowledge underpinning these requirements continues to evolve, as do laboratory methods and technologies. The European LeukemiaNet convened an expert panel to critically consider the current status of genetic laboratory approaches to help diagnose and manage CML patients. Our recommendations focus on current best practice and highlight the strengths and pitfalls of commonly used laboratory tests

    Fecal microbiota transplant mitigates adverse outcomes in patients colonized with multidrug-resistant organisms undergoing allogeneic hematopoietic cell transplantation

    Get PDF
    The gut microbiome can be adversely affected by chemotherapy and antibiotics prior to hematopoietic cell transplantation (HCT). This affects graft success and increases susceptibility to multidrug-resistant organism (MDRO) colonization and infection. We performed an initial retrospective analysis of our use of fecal microbiota transplantation (FMT) from healthy donors as therapy for MDRO-colonized patients with hematological malignancy. FMT was performed on eight MDRO-colonized patients pre-HCT (FMT-MDRO group), and outcomes compared with 11 MDRO colonized HCT patients from the same period. At 12 months, survival was significantly higher in the FMT-MDRO group (70% versus 36% p = 0.044). Post-HCT, fewer FMT-MDRO patients required intensive care (0% versus 46%, P = 0.045) or experienced fever (0.29 versus 0.11 days, P = 0.027). Intestinal MDRO decolonization occurred in 25% of FMT-MDRO patients versus 11% non-FMT MDRO patients. Despite the significant difference and statistically comparable patient/transplant characteristics, as the sample size was small, a matched-pair analysis to non-MDRO colonized control cohorts (2:1 matching) was performed. At 12 months, the MDRO group who did not have an FMT had significantly lower survival (36.4% versus 61.9% respectively, p=0.012), and higher non relapse mortality (NRM; 60.2% versus 16.7% respectively, p=0.009) than their paired non-colonized cohort. There was no difference in survival (70% versus 43.4%, p=0.14) or NRM (12.5% versus 31.2% respectively, p=0.24) between the FMT-MDRO group and their paired cohort. Negative outcomes, including mortality associated with MDRO colonization, may be ameliorated by pre-HCT FMT, despite lack of intestinal decolonization. Further work is needed to explore the observed benefit

    Evidence for B cell exhaustion in chronic graft-versus-host disease

    Get PDF
    Chronic graft-versus-host disease (cGvHD) remains a major complication of allogeneic hematopoietic stem cell transplantation (HSCT). A number of studies support a role for B cells in the pathogenesis of cGvHD. In this study, we report the presence of an expanded population of CD19+CD21− B cells with features of exhaustion in the peripheral blood of patients with cGvHD. CD21− B cells were significantly increased in patients with active cGvHD compared to patients without cGvHD and healthy controls (median 12.2 versus 2.12 versus 3%, respectively; p < 0.01). Compared with naïve (CD27−CD21+) and classical memory (CD27+CD21+) B cells, CD19+CD21− B cells in cGvHD were CD10 negative, CD27 negative and CD20hi, and exhibited features of exhaustion, including increased expression of multiple inhibitory receptors such as FCRL4, CD22, CD85J, and altered expression of chemokine and adhesion molecules such as CD11c, CXCR3, CCR7, and CD62L. Moreover, CD21− B cells in cGvHD patients were functionally exhausted and displayed poor proliferative response and calcium mobilization in response to B-cell receptor triggering and CD40 ligation. Finally, the frequencies of circulating CD21− B cells correlated with cGvHD severity in patients after HSCT. Our study further characterizes B cells in chronic cGVHD and supports the use of CD21−CD27−CD10− B cell frequencies as a biomarker of disease severity

    A donor-specific epigenetic classifier for acute graft-versus-host disease severity in hematopoietic stem cell

    Get PDF
    Background Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for many hematological conditions. Acute graft-versus-host disease (aGVHD) is a prevalent immune-mediated complication following HSCT. Current diagnostic biomarkers that correlate with aGVHD severity, progression, and therapy response in graft recipients are insufficient. Here, we investigated whether epigenetic marks measured in peripheral blood of healthy graft donors stratify aGVHD severity in human leukocyte antigen (HLA)-matched sibling recipients prior to T cell-depleted HSCT. Methods We measured DNA methylation levels genome-wide at single-nucleotide resolution in peripheral blood of 85 HSCT donors, matched to recipients with various transplant outcomes, with Illumina Infinium HumanMethylation450 BeadChips. Results Using genome-wide DNA methylation profiling, we showed that epigenetic signatures underlying aGVHD severity in recipients correspond to immune pathways relevant to aGVHD etiology. We discovered 31 DNA methylation marks in donors that associated with aGVHD severity status in recipients, and demonstrated strong predictive performance of these markers in internal cross-validation experiments (AUC = 0.98, 95 % CI = 0.96–0.99). We replicated the top-ranked CpG classifier using an alternative, clinical DNA methylation assay (P = 0.039). In an independent cohort of 32 HSCT donors, we demonstrated the utility of the epigenetic classifier in the context of a T cell-replete conditioning regimen (P = 0.050). Conclusions Our findings suggest that epigenetic typing of HSCT donors in a clinical setting may be used in conjunction with HLA genotyping to inform both donor selection and transplantation strategy, with the ultimate aim of improving patient outcome

    Concurrent acute myeloid leukemia and T lymphoblastic lymphoma in a patient with rearranged PDGFRB genes

    Get PDF
    Concurrent hematologic malignancies are relatively rare. We encountered a case of concurrent acute myeloid leukemia (AML) and T lymphoblastic lymphoma. The bone marrow chromosome analysis showed the karyotype 46, XY, t(5;12)(q33;p13), which indicated presence of PDGFRB gene translocations. Therefore, this disease belongs to the new WHO category of myeloid and lymphoid neoplasms with abnormalities in PDGFRA, PDGFRB and FGFR1 genes. Although such genetic mutations are prone to multi-lineage differentiation, the present case is in fact the first report of concurrent AML and T lymphoblastic lymphoma involving PDGFRB mutations. The patient was treated with cytarabine and daunomycin in combination with high dose dexamethasone. Allogeneic stem cell transplantation was performed after successful remission induction for both entities. The patient eventually died of chronic graft-versus-host-disease related infection. Based on such an experience, we suggest the decision of stem cell transplantation should be weighed carefully against the risks, especially when tyrosine kinase inhibitors are safe and potentially effective in dealing with such entities

    Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib

    Get PDF
    Imatinib mesylate induces complete cytogenetic responses in patients with chronic myeloid leukemia (CML), yet many patients have detectable BCR-ABL transcripts in peripheral blood even after prolonged therapy. Bone marrow studies have shown that this residual disease resides within the stem cell compartment. Quiescence of leukemic stem cells has been suggested as a mechanism conferring insensitivity to imatinib, and exposure to the Granulocyte-Colony Stimulating Factor (G-CSF), together with imatinib, has led to a significant reduction in leukemic stem cells in vitro. In this paper, we design a novel mathematical model of stem cell quiescence to investigate the treatment response to imatinib and G-CSF. We find that the addition of G-CSF to an imatinib treatment protocol leads to observable effects only if the majority of leukemic stem cells are quiescent; otherwise it does not modulate the leukemic cell burden. The latter scenario is in agreement with clinical findings in a pilot study administering imatinib continuously or intermittently, with or without G-CSF (GIMI trial). Furthermore, our model predicts that the addition of G-CSF leads to a higher risk of resistance since it increases the production of cycling leukemic stem cells. Although the pilot study did not include enough patients to draw any conclusion with statistical significance, there were more cases of progression in the experimental arms as compared to continuous imatinib. Our results suggest that the additional use of G-CSF may be detrimental to patients in the clinic

    Melphalan 140mg/m2 or 200mg/m2 for autologous transplantation in myeloma: results from the Collaboration to Collect Autologous Transplant Outcomes in Lymphoma and Myeloma (CALM) study. A report by the EBMT Chronic Malignancies Working Party

    Get PDF
    Melphalan at a dose of 200mg/m2 is standard conditioning prior to autologous haematopoietic stem cell transplantation for multiple myeloma, but a dose of 140mg/m2 is often used in clinical practice in patients perceived to be at risk of excess toxicity. To determine if melphalan 200 and melphalan 140 are equally effective and tolerable in clinically relevant patient subgroups we analysed 1964 first single autologous transplantation episodes using a series of Cox proportional-hazards models. Overall survival, progression-free survival, cumulative incidence of relapse, non-relapse mortality, haematopoietic recovery and second primary malignancy rates were not significantly different between the melphalan 140 (n=245) and melphalan 200 (n=1719) groups. Multivariable subgroup analysis showed that disease status at transplantation interacted with overall survival, progression-free survival, and cumulative incidence of relapse, with a significant advantage associated with melphalan 200 in patients transplanted in less than partial response (adjusted hazard ratios for melphalan 200 versus melphalan 140: 0.5, 0.54, and 0.56). In contrast, transplantation in very good partial or complete response significantly favoured melphalan 140 for overall survival (adjusted hazard ratio: 2.02). Age, renal function, prior proteasome inhibitor treatment, gender, or Karnofsky score did not interact with overall/progression-free survival or relapse rate in the melphalan dose groups. There were no significant survival or relapse rate differences between melphalan 200 and melphalan 140 patients with high-risk or standard-risk chromosomal abnormalities. In conclusion, remission status at the time of transplantation may favour melphalan 200 or melphalan 140 for key transplant outcomes (NCT01362972)
    • …
    corecore