5,652 research outputs found
Photoemission spectroscopy and sum rules in dilute electron-phonon systems
A family of exact sum rules for the one-polaron spectral function in the
low-density limit is derived. An algorithm to calculate energy moments of
arbitrary order of the spectral function is presented. Explicit expressions are
given for the first two moments of a model with general electron-phonon
interaction, and for the first four moments of the Holstein polaron. The sum
rules are linked to experiments on momentum-resolved photoemission
spectroscopy. The bare electronic dispersion and the electron-phonon coupling
constant can be extracted from the first and second moments of spectrum. The
sum rules could serve as constraints in analytical and numerical studies of
electron-phonon models.Comment: 4 page
Formalizing Size-Optimal Sorting Networks: Extracting a Certified Proof Checker
Since the proof of the four color theorem in 1976, computer-generated proofs
have become a reality in mathematics and computer science. During the last
decade, we have seen formal proofs using verified proof assistants being used
to verify the validity of such proofs.
In this paper, we describe a formalized theory of size-optimal sorting
networks. From this formalization we extract a certified checker that
successfully verifies computer-generated proofs of optimality on up to 8
inputs. The checker relies on an untrusted oracle to shortcut the search for
witnesses on more than 1.6 million NP-complete subproblems.Comment: IMADA-preprint-c
Quantum coherence and carriers mobility in organic semiconductors
We present a model of charge transport in organic molecular semiconductors
based on the effects of lattice fluctuations on the quantum coherence of the
electronic state of the charge carrier. Thermal intermolecular phonons and
librations tend to localize pure coherent states and to assist the motion of
less coherent ones. Decoherence is thus the primary mechanism by which
conduction occurs. It is driven by the coupling of the carrier to the molecular
lattice through polarization and transfer integral fluctuations as described by
the hamiltonian of Gosar and Choi. Localization effects in the quantum coherent
regime are modeled via the Anderson hamiltonian with correlated diagonal and
non-diagonal disorder leading to the determination of the carrier localization
length. This length defines the coherent extension of the ground state and
determines, in turn, the diffusion range in the incoherent regime and thus the
mobility. The transfer integral disorder of Troisi and Orlandi can also be
incorporated. This model, based on the idea of decoherence, allowed us to
predict the value and temperature dependence of the carrier mobility in
prototypical organic semiconductors that are in qualitative accord with
experiments
Single Event Effects in the Pixel readout chip for BTeV
In future experiments the readout electronics for pixel detectors is required
to be resistant to a very high radiation level. In this paper we report on
irradiation tests performed on several preFPIX2 prototype pixel readout chips
for the BTeV experiment exposed to a 200 MeV proton beam. The prototype chips
have been implemented in commercial 0.25 um CMOS processes following radiation
tolerant design rules. The results show that this ASIC design tolerates a large
total radiation dose, and that radiation induced Single Event Effects occur at
a manageable level.Comment: 15 pages, 6 Postscript figure
Mobile Resource Guarantees for Smart Devices
Abstract. We present the Mobile Resource Guarantees framework: a system for ensuring that downloaded programs are free from run-time violations of resource bounds. Certificates are attached to code in the form of efficiently checkable proofs of resource bounds; in contrast to cryptographic certificates of code origin, these are independent of trust networks. A novel programming language with resource constraints encoded in function types is used to streamline the generation of proofs of resource usage.
Kaon decays and the flavour problem
After a brief introduction to the so-called flavour problem, we discuss the
role of rare K decays in probing the mechanism of quark-flavour mixing.
Particular attention is devoted to the formulation of the Minimal Flavour
Violation hypothesis, as a general and natural solution to the flavour problem,
and to the fundamental role of K -> pi nu nu-bar decays in testing this
scenario.Comment: 10 pages, 6 figures, contribution to TH 2002 (Paris, July 2002
Comment on ``Spin Dependent Hopping and Colossal Negative Magnetoresistance in Epitaxial Films in Fields up to 50 T''
Recently Wagner et al. [Phys. Rev. Lett. Vol. 81, P. 3980 (1998)] proposed
that Mott's original model be modified to incorporate a hopping barrier which
depends on the misorientation between the spins of electrons at the initial and
the final states in an elementary process. They further claimed that using the
model they can explain the observed scaling behavior--
negative-magnetoresistivity scaling proportional to the Brillouin function
in the ferromagnetic state and to in the paramagnetic
state. In this comment we argue that the modification needed for Mott's
original model is different from that proposed by Wagner et al. and further
show that our picture will successfully explain the observed scaling in the two
regimes.Comment: 1 pag
Heterodyne non-demolition measurements on cold atomic samples: towards the preparation of non-classical states for atom interferometry
We report on a novel experiment to generate non-classical atomic states via
quantum non-demolition (QND) measurements on cold atomic samples prepared in a
high finesse ring cavity. The heterodyne technique developed for the QND
detection exhibits an optical shot-noise limited behavior for local oscillator
optical power of a few hundred \muW, and a detection bandwidth of several GHz.
This detection tool is used in single pass to follow non destructively the
internal state evolution of an atomic sample when subjected to Rabi
oscillations or a spin-echo interferometric sequence.Comment: 23 page
- âŠ