5,652 research outputs found

    Photoemission spectroscopy and sum rules in dilute electron-phonon systems

    Full text link
    A family of exact sum rules for the one-polaron spectral function in the low-density limit is derived. An algorithm to calculate energy moments of arbitrary order of the spectral function is presented. Explicit expressions are given for the first two moments of a model with general electron-phonon interaction, and for the first four moments of the Holstein polaron. The sum rules are linked to experiments on momentum-resolved photoemission spectroscopy. The bare electronic dispersion and the electron-phonon coupling constant can be extracted from the first and second moments of spectrum. The sum rules could serve as constraints in analytical and numerical studies of electron-phonon models.Comment: 4 page

    Formalizing Size-Optimal Sorting Networks: Extracting a Certified Proof Checker

    Full text link
    Since the proof of the four color theorem in 1976, computer-generated proofs have become a reality in mathematics and computer science. During the last decade, we have seen formal proofs using verified proof assistants being used to verify the validity of such proofs. In this paper, we describe a formalized theory of size-optimal sorting networks. From this formalization we extract a certified checker that successfully verifies computer-generated proofs of optimality on up to 8 inputs. The checker relies on an untrusted oracle to shortcut the search for witnesses on more than 1.6 million NP-complete subproblems.Comment: IMADA-preprint-c

    Quantum coherence and carriers mobility in organic semiconductors

    Full text link
    We present a model of charge transport in organic molecular semiconductors based on the effects of lattice fluctuations on the quantum coherence of the electronic state of the charge carrier. Thermal intermolecular phonons and librations tend to localize pure coherent states and to assist the motion of less coherent ones. Decoherence is thus the primary mechanism by which conduction occurs. It is driven by the coupling of the carrier to the molecular lattice through polarization and transfer integral fluctuations as described by the hamiltonian of Gosar and Choi. Localization effects in the quantum coherent regime are modeled via the Anderson hamiltonian with correlated diagonal and non-diagonal disorder leading to the determination of the carrier localization length. This length defines the coherent extension of the ground state and determines, in turn, the diffusion range in the incoherent regime and thus the mobility. The transfer integral disorder of Troisi and Orlandi can also be incorporated. This model, based on the idea of decoherence, allowed us to predict the value and temperature dependence of the carrier mobility in prototypical organic semiconductors that are in qualitative accord with experiments

    Single Event Effects in the Pixel readout chip for BTeV

    Get PDF
    In future experiments the readout electronics for pixel detectors is required to be resistant to a very high radiation level. In this paper we report on irradiation tests performed on several preFPIX2 prototype pixel readout chips for the BTeV experiment exposed to a 200 MeV proton beam. The prototype chips have been implemented in commercial 0.25 um CMOS processes following radiation tolerant design rules. The results show that this ASIC design tolerates a large total radiation dose, and that radiation induced Single Event Effects occur at a manageable level.Comment: 15 pages, 6 Postscript figure

    Mobile Resource Guarantees for Smart Devices

    Get PDF
    Abstract. We present the Mobile Resource Guarantees framework: a system for ensuring that downloaded programs are free from run-time violations of resource bounds. Certificates are attached to code in the form of efficiently checkable proofs of resource bounds; in contrast to cryptographic certificates of code origin, these are independent of trust networks. A novel programming language with resource constraints encoded in function types is used to streamline the generation of proofs of resource usage.

    Kaon decays and the flavour problem

    Get PDF
    After a brief introduction to the so-called flavour problem, we discuss the role of rare K decays in probing the mechanism of quark-flavour mixing. Particular attention is devoted to the formulation of the Minimal Flavour Violation hypothesis, as a general and natural solution to the flavour problem, and to the fundamental role of K -> pi nu nu-bar decays in testing this scenario.Comment: 10 pages, 6 figures, contribution to TH 2002 (Paris, July 2002

    Comment on ``Spin Dependent Hopping and Colossal Negative Magnetoresistance in Epitaxial Nd0.52Sr0.48MnO3Nd_{0.52}Sr_{0.48}MnO_{3} Films in Fields up to 50 T''

    Full text link
    Recently Wagner et al. [Phys. Rev. Lett. Vol. 81, P. 3980 (1998)] proposed that Mott's original model be modified to incorporate a hopping barrier which depends on the misorientation between the spins of electrons at the initial and the final states in an elementary process. They further claimed that using the model they can explain the observed scaling behavior-- negative-magnetoresistivity scaling proportional to the Brillouin function B\cal{B} in the ferromagnetic state and to B2{\cal{B}}^2 in the paramagnetic state. In this comment we argue that the modification needed for Mott's original model is different from that proposed by Wagner et al. and further show that our picture will successfully explain the observed scaling in the two regimes.Comment: 1 pag

    Heterodyne non-demolition measurements on cold atomic samples: towards the preparation of non-classical states for atom interferometry

    Full text link
    We report on a novel experiment to generate non-classical atomic states via quantum non-demolition (QND) measurements on cold atomic samples prepared in a high finesse ring cavity. The heterodyne technique developed for the QND detection exhibits an optical shot-noise limited behavior for local oscillator optical power of a few hundred \muW, and a detection bandwidth of several GHz. This detection tool is used in single pass to follow non destructively the internal state evolution of an atomic sample when subjected to Rabi oscillations or a spin-echo interferometric sequence.Comment: 23 page
    • 

    corecore