27 research outputs found
Insulin resistance genetic risk score and burden of coronary artery disease in patients referred for coronary angiography
AimsInsulin resistance associates with development of metabolic syndrome and risk of cardiovascular disease. The link between insulin resistance and cardiovascular disease is complex and multifactorial. Confirming the genetic link between insulin resistance, type 2 diabetes, and coronary artery disease, as well as the extent of coronary artery disease, is important and may provide better risk stratification for patients at risk. We investigated whether a genetic risk score of 53 single nucleotide polymorphisms known to be associated with insulin resistance phenotypes was associated with diabetes and burden of coronary artery disease.Methods and resultsWe genotyped patients with a coronary angiography performed in the capital region of Denmark from 2010-2014 and constructed a genetic risk score of the 53 single nucleotide polymorphisms. Logistic regression using quartiles of the genetic risk score was performed to determine associations with diabetes and coronary artery disease. Associations with the extent of coronary artery disease, defined as one-, two- or three-vessel coronary artery disease, was determined by multinomial logistic regression. We identified 4,963 patients, of which 17% had diabetes and 55% had significant coronary artery disease. Of the latter, 27%, 14% and 14% had one, two or three-vessel coronary artery disease, respectively. No significant increased risk of diabetes was identified comparing the highest genetic risk score quartile with the lowest. An increased risk of coronary artery disease was found for patients with the highest genetic risk score quartile in both unadjusted and adjusted analyses, OR 1.21 (95% CI: 1.03, 1.42, p = 0.02) and 1.25 (95% CI 1.06, 1.48, pConclusionsAmong patients referred for coronary angiography, only a strong genetic predisposition to insulin resistance was associated with risk of coronary artery disease and with a greater disease burden
Genome-wide associations for birth weight and correlations with adult disease
Birth weight (BW) is influenced by both foetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease1. These lifecourse associations have often been attributed to the impact of an adverse early life environment. We performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where foetal genotype was associated with BW (P <5x10-8). Overall, ˜15% of variance in BW could be captured by assays of foetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (rg-0.22, P =5.5x10-13), T2D (rg-0.27, P =1.1x10-6) and coronary artery disease (rg-0.30, P =6.5x10-9) and, in large cohort data sets, demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P =1.9x10-4). We have demonstrated that lifecourse associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and have highlighted some of the pathways through which these causal genetic effects are mediated
Genome-wide associations for birth weight and correlations with adult disease
Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW ( < 5 × 10). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure ( = -0.22, = 5.5 × 10), T2D ( = -0.27, = 1.1 × 10) and coronary artery disease ( = -0.30, = 6.5 × 10). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions ( = 1.9 × 10). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated.For a full list of the funders pelase visit the publisher's website and look at the supplemetary material provided. Some of the funders are: British Heart Foundation, Cancer Research UK, Medical Research Council, National Institutes of Health, Royal Society and Wellcome Trust
Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.
Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.The Fenland Study is funded by the Medical Research Council (MC_U106179471) and
Wellcome Trust
Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation.
Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets
Hypertension genetic risk score is associated with burden of coronary heart disease among patients referred for coronary angiography.
BACKGROUND:Recent GWAS studies have identified more than 300 SNPs associated with variation in blood pressure. We investigated whether a genetic risk score constructed from these variants is associated with burden of coronary heart disease. METHODS:From 2010-2014, 4,809 individuals admitted to coronary angiography in Capital Region of Copenhagen were genotyped. We calculated hypertension GRS comprised of GWAS identified SNPs associated with blood pressure. We performed logistic regression analyses to estimate the risk of hypertension and prevalent CHD. We also assessed the severity of CHD associated with the GRS. The analyses were performed using GRS quartiles. We used the Inter99 cohort to validate our results and to investigate for possible pleiotropy for the GRS with other CHD risk factors. RESULTS:In COGEN, adjusted odds ratios comparing the 2nd, 3rd and 4th cumulative GRS quartiles with the reference were 1.12(95% CI 0.95-1.33), 1.35(95% CI 1.14-1.59) and 1.29(95% CI 1.09-1.53) respectively, for prevalent CHD. The adjusted multinomial logistic regression showed that 3rd and 4th GRS quartiles were associated with increased odds of developing two(OR 1.33, 95% CI 1.04-1.71 and OR 1.36, 95% CI 1.06-1.75, respectively) and three coronary vessel disease(OR 1.77, 95% CI 1.36-2.30 and OR 1.65, 95% CI 1.26-2.15, respectively). Similar results for incident CHD were observed in the Inter99 cohort. The hypertension GRS did not associate with type 2 diabetes, smoking, BMI or hyperlipidemia. CONCLUSION:Hypertension GRS quartiles were associated with an increased risk of hypertension, prevalent CHD, and burden of coronary vessel disease in a dose-response pattern. We showed no evidence for pleiotropy with other risk factors for CHD