7 research outputs found

    CD8+ T cell efficacy in vaccination and disease

    No full text
    Much effort has been devoted to the design of vaccines that induce adaptive cellular immunity, in particular CD8+ T cells, which have a central role in the host response to viral infections and cancers. To date, however, the development of effective T cell vaccines remains elusive. This is due, in part, to the lack of clearly defined correlates of protection and the inherent difficulties that hinder full characterization of the determinants of successful T cell immunity in humans. Recent data from the disparate fields of infectious disease and tumor immunology have converged, with an emphasis on the functional attributes of individual antigen-specific T cell clonotypes, to provide a better understanding of CD8+ T cell efficacy. This new knowledge paves the way to the design of more effective T cell vaccines and highlights the importance of comprehensive immunomonitoring

    A human memory T cell subset with stem cell–like properties

    No full text
    Immunological memory is thought to depend on a stem cell–like, self-renewing population of lymphocytes capable of differentiating into effector cells in response to antigen re-exposure. Here we describe a long-lived human memory T cell population that has an enhanced capacity for self-renewal and a multipotent ability to derive central memory, effector memory and effector T cells. These cells, specific to multiple viral and self-tumor antigens, were found within a CD45RO−, CCR7+, CD45RA+, CD62L+, CD27+, CD28+ and IL-7Rα+ T cell compartment characteristic of naive T cells. However, they expressed large amounts of CD95, IL-2Rβ, CXCR3, and LFA-1, and showed numerous functional attributes distinctive of memory cells. Compared with known memory populations, these lymphocytes had increased proliferative capacity and more efficiently reconstituted immunodeficient hosts, and they mediated superior antitumor responses in a humanized mouse model. The identification of a human stem cell–like memory T cell population is of direct relevance to the design of vaccines and T cell therapies

    T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion?

    Full text link
    Chronic viral infections and malignant tumours induce T cells that have a reduced ability to secrete effector cytokines and have upregulated expression of the inhibitory receptor PD1 (programmed cell death protein 1). These features have so far been considered to mark terminally differentiated 'exhausted' T cells. However, several recent clinical and experimental observations indicate that phenotypically exhausted T cells can still mediate a crucial level of pathogen or tumour control. In this Opinion article, we propose that the exhausted phenotype results from a differentiation process in which T cells stably adjust their effector capacity to the needs of chronic infection. We argue that this phenotype is optimized to cause minimal tissue damage while still mediating a critical level of pathogen control. In contrast to the presently held view of functional exhaustion, this new concept better reflects the pathophysiology and clinical manifestations of persisting infections, and it provides a rationale for emerging therapies that enhance T cell activity in chronic infection and cancer by blocking inhibitory receptors

    Nanoparticle-based delivery platforms for mRNA vaccine development

    No full text
    corecore