600 research outputs found
Multipole moments as a tool to infer from gravitational waves the geometry around an axisymmetric body
A binary system, composed of a compact object orbiting around a massive
central body, will emit gravitational waves which will depend on the central
body's spacetime geometry. We expect that the gravitational wave observables
will somehow ``encode'' the information about the spacetime structure. On the
other hand, it has been known for some time that the geometry around an
axisymmetric body can be described by its (Geroch-Hansen) multipole moments.
Therefore one can speculate that using the multipole moments can prove to be a
helpful tool for extracting this information. We will try to demonstrate this
in this talk, following the procedure described by [F. D. Ryan, Phys. Rev. D
{\bf 52} 5707 (1995)] and [T. P. Sotiriou and T. A. Apostolatos, Phys. Rev. D
{\bf 71} 044005 (2005)].Comment: Talk given by T. P. S. at Albert Einstein's Century International
Conference, Paris, France, 18-22 Jul 200
Measuring mass moments and electromagnetic moments of a massive, axisymmetric body, through gravitational waves
The electrovacuum around a rotating massive body with electric charge density
is described by its multipole moments (mass moments, mass-current moments,
electric moments, and magnetic moments). A small uncharged test particle
orbiting around such a body moves on geodesics if gravitational radiation is
ignored. The waves emitted by the small body carry information about the
geometry of the central object, and hence, in principle, we can infer all its
multipole moments. Due to its axisymmetry the source is characterized now by
four families of scalar multipole moments: its mass moments , its
mass-current moments , its electrical moments and its magnetic
moments , where . Four measurable quantities, the energy
emitted by gravitational waves per logarithmic interval of frequency, the
precession of the periastron (assuming almost circular orbits), the precession
of the orbital plane (assuming almost equatorial orbits), and the number of
cycles emitted per logarithmic interval of frequency, are presented as power
series of the newtonian orbital velocity of the test body. The power series
coefficients are simple polynomials of the various moments.Comment: Talk given by T. A. A. at Recent Advances in Astronomy and
Astrophysics, Lixourion, Kefallinia island, Greece, 8-11 Sep 200
Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems: New Hierarchical Scheme using "Spiky" Templates
In a recent investigation of the effects of precession on the anticipated
detection of gravitational-wave inspiral signals from compact object binaries
with moderate total masses, we found that (i) if precession is ignored, the
inspiral detection rate can decrease by almost a factor of 10, and (ii)
previously proposed ``mimic'' templates cannot improve the detection rate
significantly (by more than a factor of 2). In this paper we propose a new
family of templates that can improve the detection rate by factors of 5--6 in
cases where precession is most important. Our proposed method for these new
``mimic'' templates involves a hierarchical scheme of efficient, two-parameter
template searches that can account for a sequence of spikes that appear in the
residual inspiral phase, after one corrects for the any oscillatory
modification in the phase. We present our results for two cases of compact
object masses (10 and 1.4 solar masses and 7 and 3 solar masses) as a function
of spin properties. Although further work is needed to fully assess the
computational efficiency of this newly proposed template family, we conclude
that these ``spiky templates'' are good candidates for a family of precession
templates used in realistic searches, that can improve detection rates of
inspiral events.Comment: 17 pages, 22 figures, version accepted by PRD. Minor revision
- …