39 research outputs found

    John Thomas Crowell, Jr. (1898-1985)

    Get PDF
    Jack Crowell supported, led, and advised the work of innumerable people for many years in Greenland, northern Canada, the Arctic Ocean and Antarctica. He was a master mariner by training and he applied the discipline and skills of that calling throughout the transition of polar development from the age of sail to the jet age. ... every aspect of polar activity and development interested him, and he gave it his best support for more than forty years. ... [In 1953] Crowell joined the staff of the Northeast Air Command at Fort Pepperell in St. John's, Newfoundland, as a technical advisor in the Arctic Division. He was thus directly involved in planning and the initial site landings for DEW Line stations in Canada and HIRAN sites on the Greenland Ice Cap. He was advisor to the reactivation of T-3, Fletcher's Ice Island, in the Arctic Ocean for the International Geophysical Year, and he was subsequently advisor to the U.S. Air Force for the examination of unprepared emergency airstrips at Polaris Promontory, Hall Land, and Bronlund's Fiord, Peary Land, North Greenland. Crowell then joined the National Science Foundation as special projects officer. He was responsible for the conversion and commissioning of the Eltanin for Antarctic oceanographic research, for the planning and construction of the research vessel Hero, and for planning an Arctic Ocean drifting research barge - a concept that has not yet come to pass. Crowell made two trips for NSF on icebreakers to the Antarctic Peninsula to select a site for Palmer Station. ... An island in Frobisher Bay, Baffin Island, a harbor in Labrador, and a mountain in Antarctica are named for Crowell ...

    Temporal Patterns of Arctic and Subarctic Zooplankton Community Composition in Jones Sound, Canadian Arctic Archipelago (1961–62, 1963)

    Get PDF
    An analysis of overwinter (1961–62) and early summer (1963) collections of zooplankton in Jones Sound, Canadian Arctic Archipelago, found 31 life forms and species, of which 11 species of copepods were dominant. The collections are the earliest on record from the archipelago. These 50-year-old data form a historical base that may assist in analyzing impacts of changing patterns of sea ice distributions. Water-mass-diagnostic copepod species in this study varied with the seasons; those with boreal Atlantic-Subarctic water affinities were present in the winter, but absent or few in number in the summer. Those with Arctic Basin water affinities were few or absent in winter but present or found in greater numbers in the summer. These variations in copepod species may be related to varying presence or proportions of boreal Atlantic water or Arctic Basin water in Jones Sound as also suggested by concurrent physical and chemical oceanographic data. The copepod species found in Jones Sound are also present or dominant in comparable Arctic waters from East Greenland to the Beaufort Sea and in the Arctic Basin, as reported elsewhere, and all reports differ significantly in the relative numbers of the species present from season to season or year to year. Such differences within Jones Sound are documented between the data reported here and those from the summer of 1980 reported elsewhere. It is suggested that these variations also reflect the differing presence or proportions of boreal Atlantic and Arctic Basin water. The conclusion is that Jones Sound and other High Arctic waters are subject to the presence or absence of Arctic Basin waters and boreal Atlantic waters and that the composition of the copepod communities is indicative of those changes.L’analyse d’ensembles de zooplancton prélevés au cours d’un hiver (1961-1962) et au début d’un été (1963) dans le détroit de Jones, archipel arctique canadien, a permis de repérer 31 espèces et formes de vie, dominées par 11 espèces de copépodes. Ces ensembles sont les plus anciens ensembles à avoir été répertoriés au sein de l’archipel. Ces données prélevées il y a 50 ans forment un fondement historique susceptible d’aider à analyser les incidences des tendances changeantes de la répartition des glaces de mer. Les espèces de copépodes relevées en fonction du diagnostic de la masse d’eau dans le cadre de cette étude variaient d’une saison à l’autre. Les copépodes ayant des affinités avec l’eau boréale subarctique atlantique étaient présents en hiver, mais absents ou en quantité restreinte en été, tandis que ceux ayant des affinités avec l’eau du bassin arctique étaient absents ou en quantité restreinte l’hiver, mais présents ou en plus grand nombre l’été. Ces variations sur le plan des espèces de copépodes pourraient être attribuables à la présence ou aux proportions variées d’eau atlantique boréale ou d’eau du bassin arctique dans le détroit de Jones, telles que le suggèrent également les données physiques et chimiques océanographiques concurrentes. Les espèces de copépodes repérées dans le détroit de Jones sont également présentes ou dominantes dans des eaux arctiques comparables, de l’est du Groenland jusqu’à la mer de Beaufort et dans le bassin arctique, tel que signalé ailleurs, et tous les rapports diffèrent considérablement quant au nombre relatif d’espèces présentes de saison en saison ou d’année en année. Les différences relevées au détroit de Jones sont répertoriées entre les données communiquées ici et celles de l’été 1980 communiquées ailleurs. On suggère que ces variations sont aussi le reflet de la présence ou de proportions différentes d’eau boréale atlantique et d’eau du bassin arctique. On en conclut que les eaux du détroit de Jones et celles d’autres endroits de l’Extrême-Arctique sont assujetties à la présence ou à l’absence d’eau du bassin arctique et d’eau boréale atlantique, et que la composition des communautés de copépodes est indicative de ces changements

    Bioconditioning of Arctic Waters and Stimulation of Arctic Phytoplankton by Sea Ice Algae: Vulnerability to Increased Light

    Get PDF
    Arctic sea ice algae produce extracellular organic products, which, as bioconditioners of seawater, may stimulate early summer growth of pelagic, under-sea-ice phytoplankton in low light and low temperature conditions. Sea ice algae are inhibited or decline in numbers if prematurely exposed to high light conditions, thereby reducing their ability to produce bioconditioners. As climate change creates an early reduction or removal of snow and sea ice cover, the result may be a decrease in primary phytoplankton production.Les algues de la glace de mer de l’Arctique produisent des matières organiques extracellulaires. Ă€ titre de bioconditionneurs de l’eau de mer, elles peuvent stimuler la croissance estivale prĂ©coce de phytoplancton pĂ©lagique sous la glace de mer par basse tempĂ©rature et faible luminositĂ©. La quantitĂ© d’algues de glace de mer est freinĂ©e ou diminuĂ©e en prĂ©sence prĂ©maturĂ©e de forte luminositĂ©, ce qui diminue leur aptitude Ă  produire des bioconditionneurs. Puisque le changement climatique donne lieu Ă  la rĂ©duction ou au retrait prĂ©coce de la couverture de neige et de glace de mer, cela pourrait entraĂ®ner la diminution de la production du phytoplancton primaire

    The Arctic Institute Devon Island Expedition 1960

    Get PDF
    The Arctic Institute of North America ... initiated the Devon Island Expedition 1960-1963, the objectives of which are: (1) A study of the relationships between the marine environment (Jones Sound), the Devon Island Ice Cap, and the atmosphere, with special regard to heat budget, energy flow, and moisture transfer. (2) A detailed investigation of the oceanography and marine biology of Jones Sound. (3) A detailed investigation of the archaeology, biology, and geology of Devon Island, together with other studies that may provide auxiliary information for objective (1). The main purpose of the 1960 expedition was to establish facilities and cache supplies to support the scientific program beginning in 1961. ... The party left Quebec City on July 31 on board C.M.S. d'Iberville and arrived off Cape Skogn, Devon Island on August 20. By August 24 a camp consisting of three prefabricated Jamesway buildings and stores for twenty people for 5 months was installed at 75°42'N. 84°26'W. An 18-mile tractor route to the edge of the ice cap was then laid out and 6 tons of ice cap station supplies were hauled to the top of a 1000-foot plateau at the beginning of that route. ... It was decided to cache the supplies at the edge of the plateau and to establish the ice cap station in the spring of 1961, when the ground will be frozen. ... The archaeologists located two previously unknown sites. The first, in the vicinity of the base camp, includes four or five houses, three temporary houses, and several caches. It is probably a late Thule site. The second site is located near the western tip of Cape Sparbo and has been tentatively named the "Inapok" site. It ... includes 9 houses tent rings, and a number of other structures. There are undoubtedly both Dorset and Thule, and perhaps pre-Dorset elements in the site. The entire site is well preserved and has yielded about 90 artifacts including Dorset blades, microblade points, burins, microburins, burin spalls, knives, and end blades. Oliver continued his study of arctic chironomids and other aquatic insects by extensive collecting at Resolute and on Devon Island. Harington measured over 60 musk ox skulls and made a comprehensive plant collection. The Devon Island Station will be reoccupied in late April 1961, at which time the ice cap station will be established. Studies in meteorology, glaciology, oceanography, marine biology, and geology will then begin. The archaeological work will continue with a detailed excavation of the "Inapok" site and further reconnaissance of the island

    Re: Eigil Knuth Manuscript

    Get PDF

    Ice Island. Polar Science and the Arctic Research Labratory, by Tim Weeks and Ramona Maher

    Get PDF

    Effects of temperature on the biology of the northern shrimp, Pandalus borealis, in the Gulf of Maine

    Get PDF
    Length-frequency data collected from inshore and offshore locations in the Gulf of Maine in 1966-1968 indicated that ovigerous female northern shrimp (Pandalus borealis) first appeared offshore in August and September and migrated inshore in the fall and winter. Once eggs hatched, surviving females returned offshore. Juveniles and males migrated offshore during their first two years of life. Sex transition occurred in both inshore and oll'shore waters, but most males changed sex offshore during their third and fourth years. Most shrimp changed sex and matured as females for the first time in their fourth year. Smaller females and females exposed to colder bottom temperatures spawned first. The incidence of egg parasitism peaked in January and was higher for shrimp exposed to warmer bottom temperatures. Accelerated growth at higher temperatures appeared to result in earlier or more rapid sex transition. Males and non-ovigerous females were observed to make diurnal vertical migrations, but were not found in near- surface waters where the temperature exceeded 6°C. Ovigerous females fed more heavily on benthic molluscs in inshore waters in the winter, presumably because the egg masses they were carrying prevented them from migrating vertically at night. Northern shrimp were more abundant in the southwestern region of the Gulf of Maine where bottom temperatures remain low throughout the year. Bottom trawl catch rates were highest in Jeffreys Basin where bottom temperatures were lower than at any other sampling location. Catch rates throughout the study area were inversely related to bottom temperature and reached a maximum at 3°C. An increase of 40% in fecundity between 1973 and 1979 was associated with a decline of 2-3°C in April-July offshore bottom temperatures. Furthermore, a decrease in mean fecundity per 25 mm female between 1965 and 1970 was linearly related to reduced landings between 1969 and 1974. It is hypothesized that temperature-induced changes in fecundity and, possibly, in the extent of egg mortality due to parasitism, may provide a mechanism which could partially account for changes in the size of the Gulf of Maine northern shrimp population during the last thirty years. (PDF file contains 28 pages.

    The Freshwater Copepod Limnocalanus macrurus in the Canadian Arctic Archipelago: Numbers, Weights, and Respiration Observed from September 1961 – July 1962

    Get PDF
    Numbers, weights, and oxygen consumption of the copepod Limnocalanus macrurus were measured through the winter 1961 – 62 under the ice of Immerk Lake on Devon Island, Arctic Canada. Maximum abundance was 2361 animals per m3 found under ice in mid June, average adult wet weight was 65 μg, and hourly oxygen consumption per adult ranged from 0.26 μg in late summer to 0.03 μg in early winter. The results are compared with results from Char Lake and Resolute Lake on Cornwallis Island, Arctic Canada. The Immerk population was more stable than those at the other lakes, and weights and oxygen consumption appear to be comparable. The seasonal breeding cycle at Immerk Lake was different from that at Char Lake and similar to that at Resolute Lake. A comparison of Immerk Lake data from 1961 – 62 and 1972 – 73 showed almost identical levels of total oxygen metabolism. Immerk Lake copepod oxygen consumption was 6.5% of the total lake metabolism, while that at Char Lake was 6%. These data may assist in future assessment of climate or anthropogenic changes.Le nombre, le poids et la consommation d’oxygène du copépode Limnocalanus macrurus ont été prélevés au cours de l’hiver 1961-1962 sous la glace du lac Immerk, sur l’île Devond, dans l’Arctique canadien. L’abondance maximale se dénombrait à 2 361 animaux par m3 sous la glace au milieu de juin, tandis que le poids humide moyen d’un copépode adulte s’élevait à 65 μg, et que la consommation horaire d’oxygène par adulte variait entre 0,26 μg en fin d’été et 0,03 μg en début d’hiver. Les résultats ont été comparés aux résultats obtenus au lac Char et au lac Resolute sur l’île Cornwallis, dans l’Arctique canadien. La population du lac Immerk était plus stable que celle des autres lacs, tandis que le poids et la consom­mation d’oxygène de cette population semblaient comparables. Au lac Immerk, le cycle de reproduction saisonnier différait de celui du lac Char, mais il s’apparentait à celui du lac Resolute. La comparaison des données recueillies au lac Immerk en 1961-1962 ainsi qu’en 1972-1973 a affiché des taux quasi identiques sur le plan du métabolisme de l’oxygène total. La consom­mation d’oxygène chez le copépode du lac Immerk correspondait à 6,5 % du métabolisme total du lac, tandis qu’au lac Char, ce taux s’élevait à 6 %. Ces données pourraient aider à évaluer le climat à l’avenir ou à déterminer les changements de nature anthropique

    Over-Winter Oceanographic Profiles in Jones Sound, Canadian Arctic Archipelago, November 1961 – June 1962: Temperature, Salinity, Oxygen, and Nutrients

    Get PDF
    Vertical profiles of temperature, salinity, dissolved oxygen, and inorganic nutrients (nitrate, phosphate, and silicate) were measured at five depths (2, 10, 25, 50, and 80 m) beneath the ice off the southern shore of Jones Sound, north of Devon Island, through the winter of 1961 – 62. Additional data were collected from the north side of the sound off Grise Fiord, Ellesmere Island, on 13 May 1962 and 12 May 1969. The over-winter data set is used here to characterize the transition of Arctic waters from autumn to late-spring–early summer. Minimum temperatures (< -1.8˚C) and maximum salinities (> 33.2) were reached in late winter and early spring. Oxygen levels declined over the same fall-to-late-spring period and increased markedly in June. Nitrate, phosphate, and silicate concentrations all increased from their lowest values in fall to overall highest values in late spring, after which each nutrient showed evidence of biological uptake. A deep pycnocline, between 50 and 80 m, persisted from November to February, isolating a bottom-water layer that showed evidence of microbially mediated silicate regeneration (silicate concentrations increased, phosphate decreased, and nitrate concentrations were variable). In early spring (19 March to 1 May), nitrate concentrations dropped abruptly at all depths from more than 10 μM to less than 7 μM, apparently in response to the growth of ice algae. Temperature-salinity (T-S) analyses found little evidence of significant water-mass replacements during the study period, but interpretations of coherent variations in nutrient concentrations, as well as observed salinities slightly different from those expected on the basis of ice formation, suggest otherwise. Comparison of results from north of Devon Island with those from sampling off Grise Fiord in May 1962 indicate both higher salinities and lower nutrient concentrations at the latter site; however, data collected at the same site off Grise Fiord in May 1969 showed lower salinities and more variable nutrient concentrations than in 1962.Les profils verticaux de la température, de la salinité, de l’oxygène dissous et des éléments nutritifs inorganiques (nitrate, phosphate et silicate) ont été mesurés à cinq profondeurs (2, 10, 25, 50 et 80 m) en-dessous de la glace, sur la rive sud du détroit de Jones, au nord de l’île Devon, au cours de l’hiver 1961-1962. Des données supplémentaires ont été recueillies à partir du côté nord du détroit à la hauteur du fjord Grise, à l’île d’Ellesmere, le 13 mai 1962 et le 12 mai 1969. L’ensemble de données prélevées l’hiver sert à caractériser ici la transition des eaux de l’Arctique de l’automne à la fin du printemps et au début de l’été. Les températures minimales (< -1,8 ˚C) et les salinités maximales (> 33,2) ont été atteintes à la fin de l’hiver et au début du printemps. Au cours de cette même période de l’automne à la fin du printemps, les taux d’oxygène ont baissé, puis ont connu une hausse considérable en juin. Les concentrations de nitrate, de phosphate et de silicate ont toutes connu une augmentation par rapport à leurs valeurs les plus basses de l’automne jusqu’à leurs valeurs générales les plus élevées à la fin du printemps, après quoi chaque élément nutritif a montré des signes d’implantation biologique. Une pycnocline profonde, soit entre 50 et 80 m, a persisté de novembre à février, ce qui a eu pour effet d’isoler une couche d’eau de fond laissant voir des signes de régénération du silicate assistée par les microbes (les concentrations de silicate se sont accrues, celles de phosphate ont baissé et les concentrations de nitrate étaient variables). Au début du printemps (du 19 mars au 1er mai), les concentrations de nitrate ont chuté considérablement à toutes les profondeurs de plus de 10 μM à moins de 7 μM, apparemment en réaction à la croissance des algues des glaces. Les analyses de température et de salinité (T-S) ont permis de déceler peu de signes d’importantes substitutions de la masse d’eau au cours de la période visée par l’étude, mais l’interprétation des variantes cohérentes caractérisant les concentrations d’éléments nutritifs, de même que les salinités observées qui différaient légèrement de celles escomptées en fonction de la formation des glaces, laissent entendre autrement. La comparaison des résultats du nord de l’île Devon avec les résultats de l’échantillonnage prélevé au fjord Grise en mai 1962 indique dans les deux cas des concentrations de salinité supérieures et des concentrations d’éléments nutritifs inférieures au dernier emplacement. Toutefois, les données recueillies au même emplacement du fjord Grise en mai 1969 ont montré des salinités moins élevées et des concentrations d’éléments nutritifs plus variables qu’en 1962

    The Devon Island Expedition

    Get PDF
    In 1959 the Arctic Institute of North America undertook an integrated program of long term research on Devon Island in the Queen Elizabeth Islands of arctic Canada. The co-ordinated studies were designed to help understand the interrelationships between the glacier ice of Devon Island, the ocean in Jones Sound, and the encompassing atmosphere. They are being carried out over a 3-year period under the leadership of Spencer Apollonio. The main effort is concentrated on attempts to evaluate such factors as physical, chemical, and biological variations in the arctic waters of Jones Sound caused by discharging glaciers; evaporation and transfer of moisture between the ocean waters and the ice-cap and glaciers; and the overall influences of solar radiation energy on the mass balance of the ice-cap, the biological production in the sea, and the growth and decay of sea-ice. Some supplementary studies in archaeology and geology are included in the expedition's work because of the marked deficiency of knowledge in those subjects for Devon Island. In the late summer of 1960 a main base was established on the north shore of Devon Island near Cape Skogn by an advance party of eight men taken in with their materials by the Canada Department of Transport icebreaker "d'Iberville". During a 3-week period buildings were erected and routes inland and to the ice-cap explored and marked, while an archaeological reconnaissance of the Cape Sparbo area was made by a small party under Mr. Gordon Lowther of McGill University. Everything was installed for a beginning of the 3-year program in April 1961. During the months of April to September 1961 21 men worked on extensive programs in geophysics, glaciology, marine biology and oceanography, meteorology, and surveying. Intensive work was also completed in archaeology and geology. ..
    corecore