3 research outputs found

    Open-Loop Beamforming Technique for MIMO System and Its Practical Realization

    Get PDF
    The concept of close-loop beamforming for MIMO system was well known proposed the singular value decomposition on channel matrix. This technique can improve the capacity performance, but the cost of feedback channel and the complexity processing discard the interest of implementation. Therefore, this paper aims to investigate the benefit of using an open-loop beamforming for MIMO system in practical approaches. The low-profile concept of open-loop beamforming which is convenient for implementation is proposed by just inserting Butler matrices at both transmitter and receiver. The simulation and measurement results indicate that the open-loop beamforming with Butler matrix outperforms the conventional MIMO system. Although, the close-loop beamforming offers a better performance than open-loop beamforming technique, the proposed system is attractive because it is low cost, uncomplicated, and easy to implement

    Angular Beamforming Technique for MIMO Beamforming System

    Get PDF
    The method of MIMO beamforming has gained a lot of attention. The eigen beamforming (EB) technique provides the best performance but requiring full channel information. However, it is impossible to fully acquire the channel in a real fading environment. To overcome the limitations of the EB technique, the quantized beamforming (QB) technique was proposed by using only some feedback bits instead of full channel information to calculate the suitable beamforming vectors. Unfortunalely, the complexity of finding the beamforming vectors is the limitation of the QB technique. In this paper, we propose a new technique named as angular beamforming (AB) to overcome drawbacks of QB technique. The proposed technique offers low computational complexity for finding the suitable beamforming vectors. In this paper, we also present the feasibility implementation of the proposed AB method. The experiments are undertaken mainly to verify the concept of the AB technique by utilizing the Butler matrix as a two-bit AB processor. The experimental implementation and the results demonstrate that the proposed technique is attractive from the point of view of easy implementation without much computational complexity and low cost
    corecore