948 research outputs found
Kondo effect in coupled quantum dots under magnetic fields
The Kondo effect in coupled quantum dots is investigated theoretically under
magnetic fields. We show that the magnetoconductance (MC) illustrates peak
structures of the Kondo resonant spectra. When the dot-dot tunneling coupling
is smaller than the dot-lead coupling (level broadening), the
Kondo resonant levels appear at the Fermi level (). The Zeeman splitting
of the levels weakens the Kondo effect, which results in a negative MC. When
is larger than , the Kondo resonances form bonding and
anti-bonding levels, located below and above , respectively. We observe a
positive MC since the Zeeman splitting increases the overlap between the levels
at . In the presence of the antiferromagnetic spin coupling between the
dots, the sign of MC can change as a function of the gate voltage.Comment: 6 pages, 3 figure
Electron Transport through T-Shaped Double-Dots System
Correlation effects on electron transport through a system of T-shaped
double-dots are investigated, for which only one of the dots is directly
connected to the leads. We evaluate the local density of states and the
conductance by means of the non-crossing approximation at finite temperatures
as well as the slave-boson mean field approximation at zero temperature. It is
found that the dot which is not directly connected to the leads considerably
influences the conductance, making its behavior quite different from the case
of a single-dot system. In particular, we find a novel phenomenon in the Kondo
regime with a small inter-dot coupling, i.e.
Fano-like suppression of the Kondo-mediated conductance, when two dot levels
coincide with each other energetically.Comment: 6 pages,7 figure
Spin-Polarized Transprot through Double Quantum Dots
We investigate spin-polarized transport phenomena through double quantum dots
coupled to ferromagnetic leads in series. By means of the slave-boson
mean-field approximation, we calculate the conductance in the Kondo regime for
two different configurations of the leads: spin-polarization of two
ferromagnetic leads is parallel or anti-parallel. It is found that transport
shows some remarkable properties depending on the tunneling strength between
two dots. These properties are explained in terms of the Kondo resonances in
the local density of states.Comment: 8 pages, 11 figure
Kondo resonant spectra in coupled quantum dots
The Kondo effect in coupled quantum dots is investigated from the viewpoint
of transmission spectroscopy using the slave-boson formalism of the Anderson
model. The antiferromagnetic spin-spin coupling between the dots is taken
into account. Conductance through the dots connected in a series is
characterized by the competition between the dot-dot tunneling coupling
and the level broadening in the dots (dot-lead coupling). When
, the Kondo resonance is formed between each dot and lead,
which is replaced by a spin-singlet state in the dots at low gate voltages. The
gate voltage dependence of has a sharp peak of in height in the
crossover region between the Kondo and spin-singlet states. The sharp peak of
survives when the energy levels are different between the dots. When , the "molecular levels" between the Kondo resonant states appear;
the Kondo resonant peaks are located below and above the Fermi level in the
leads at low gate voltages. The gate voltage dependence of has a broad
peak, which is robust against . The broad peak splits into two peaks when
the energy levels are different, reflecting the formation of the asymmetric
molecular levels between the Kondo resonant states.Comment: 21 pages, 8 figures, to appear in Phys. Rev.
Modified Perturbation Theory Applied to Kondo-Type Transport through a Quantum Dot under a Magnetic Field
Linear conductance through a quantum dot is calculated under a finite
magnetic field using the modified perturbation theory. The method is based on
the second-order perturbation theory with respect to the Coulomb repulsion, but
the self-energy is modified to reproduce the correct atomic limit and to
fulfill the Friedel sum rule exactly. Although this method is applicable only
to zero temperature in a strict sense, it is approximately extended to finite
temperatures. It is found that the conductance near electron-hole symmetry is
suppressed by the application of the magnetic field at low temperatures.
Positive magnetoconductance is observed in the case of large electron-hole
asymmetry.Comment: 4pages, 5 figure
Solving the Shortest Vector Problem in Lattices Faster Using Quantum Search
By applying Grover's quantum search algorithm to the lattice algorithms of
Micciancio and Voulgaris, Nguyen and Vidick, Wang et al., and Pujol and
Stehl\'{e}, we obtain improved asymptotic quantum results for solving the
shortest vector problem. With quantum computers we can provably find a shortest
vector in time , improving upon the classical time
complexity of of Pujol and Stehl\'{e} and the of Micciancio and Voulgaris, while heuristically we expect to find a
shortest vector in time , improving upon the classical time
complexity of of Wang et al. These quantum complexities
will be an important guide for the selection of parameters for post-quantum
cryptosystems based on the hardness of the shortest vector problem.Comment: 19 page
Smc5/6: a link between DNA repair and unidirectional replication?
Of the three structural maintenance of chromosome (SMC) complexes, two directly regulate chromosome dynamics. The third, Smc5/6, functions mainly in homologous recombination and in completing DNA replication. The literature suggests that Smc5/6 coordinates DNA repair, in part through post-translational modification of uncharacterized target proteins that can dictate their subcellular localization, and that Smc5/6 also functions to establish DNA-damage-dependent cohesion. A nucleolar-specific Smc5/6 function has been proposed because Smc5/6 yeast mutants display penetrant phenotypes of ribosomal DNA (rDNA) instability. rDNA repeats are replicated unidirectionally. Here, we propose that unidirectional replication, combined with global Smc5/6 functions, can explain the apparent rDNA specificity
Spintronic transport and Kondo effect in quantum dots
We investigate the spin-dependent transport properties of quantum-dot based
structures where Kondo correlations dominate the electronic dynamics. The
coupling to ferromagnetic leads with parallel magnetizations is known to give
rise to nontrivial effects in the local density of states of a single quantum
dot. We show that this influence strongly depends on whether charge
fluctuations are present or absent in the dot. This result is confirmed with
numerical renormalization group calculations and perturbation theory in the
on-site interaction. In the Fermi-liquid fixed point, we determine the
correlations of the electric current at zero temperature (shot noise) and
demonstrate that the Fano factor is suppressed below the Poissonian limit for
the symmetric point of the Anderson Hamiltonian even for nonzero lead
magnetizations. We discuss possible avenues of future research in this field:
coupling to the low energy excitations of the ferromagnets (magnons), extension
to double quantum dot systems with interdot antiferromagnetic interaction and
effect of spin-polarized currents on higher symmetry Kondo states such as
SU(4).Comment: 11 pages, 5 figures. Proceedings of the 3rd Intl. Conf. on Physics
and Applications of Spin-Related Phenomena in Semiconductors, Santa Barbara,
200
The p(d,p)d and p(d,p)pn reactions as a tool for the study of the short range internal structure of the deuteron
In recent time the deuteron structure at short distances is often treated
from the point of view nonnucleonic degrees of freedom. In this paper the
measurements of T-odd polarization observables using tensor polarized deuteron
beam and polarized proton target or proton polarimeter are proposed to search
the quark configurations inside the deuteron.Comment: 12 pages, 8 Postscript figures, submitted in Phys.Atom.Nuc
- …
