114 research outputs found
Lidar waveform based analysis of depth images constructed using sparse single-photon data
This paper presents a new Bayesian model and algorithm used for depth and
intensity profiling using full waveforms from the time-correlated single photon
counting (TCSPC) measurement in the limit of very low photon counts. The model
proposed represents each Lidar waveform as a combination of a known impulse
response, weighted by the target intensity, and an unknown constant background,
corrupted by Poisson noise. Prior knowledge about the problem is embedded in a
hierarchical model that describes the dependence structure between the model
parameters and their constraints. In particular, a gamma Markov random field
(MRF) is used to model the joint distribution of the target intensity, and a
second MRF is used to model the distribution of the target depth, which are
both expected to exhibit significant spatial correlations. An adaptive Markov
chain Monte Carlo algorithm is then proposed to compute the Bayesian estimates
of interest and perform Bayesian inference. This algorithm is equipped with a
stochastic optimization adaptation mechanism that automatically adjusts the
parameters of the MRFs by maximum marginal likelihood estimation. Finally, the
benefits of the proposed methodology are demonstrated through a serie of
experiments using real data
Robust Bayesian target detection algorithm for depth imaging from sparse single-photon data
This paper presents a new Bayesian model and associated algorithm for depth
and intensity profiling using full waveforms from time-correlated single-photon
counting (TCSPC) measurements in the limit of very low photon counts (i.e.,
typically less than 20 photons per pixel). The model represents each Lidar
waveform as an unknown constant background level, which is combined in the
presence of a target, to a known impulse response weighted by the target
intensity and finally corrupted by Poisson noise. The joint target detection
and depth imaging problem is expressed as a pixel-wise model selection and
estimation problem which is solved using Bayesian inference. Prior knowledge
about the problem is embedded in a hierarchical model that describes the
dependence structure between the model parameters while accounting for their
constraints. In particular, Markov random fields (MRFs) are used to model the
joint distribution of the background levels and of the target presence labels,
which are both expected to exhibit significant spatial correlations. An
adaptive Markov chain Monte Carlo algorithm including reversible-jump updates
is then proposed to compute the Bayesian estimates of interest. This algorithm
is equipped with a stochastic optimization adaptation mechanism that
automatically adjusts the parameters of the MRFs by maximum marginal likelihood
estimation. Finally, the benefits of the proposed methodology are demonstrated
through a series of experiments using real data.Comment: arXiv admin note: text overlap with arXiv:1507.0251
Full waveform analysis for long-range 3D imaging laser radar
The new generation of 3D imaging systems based on laser radar (ladar) offers significant advantages in defense and security applications. In particular, it is possible to retrieve 3D shape information directly from the scene and separate a target from background or foreground clutter by extracting a narrow depth range from the field of view by range gating, either in the sensor or by postprocessing. We discuss and demonstrate the applicability of full-waveform ladar to produce multilayer 3D imagery, in which each pixel produces a complex temporal response that describes the scene structure. Such complexity caused by multiple and distributed reflection arises in many relevant scenarios, for example in viewing partially occluded targets, through semitransparent materials (e.g., windows) and through distributed reflective media such as foliage. We demonstrate our methodology on 3D image data acquired by a scanning time-of-flight system, developed in our own laboratories, which uses the time-correlated single-photon counting technique
- …