473 research outputs found
éåãã³ãã«å¹æã®éæåç¹°ã蟌ã¿çŸ€ã«ããè©äŸ¡
é沢倧åŠçå·¥ç 究åæ°ç©ç§åŠç³»éåãã³ãã«å¹æã®å
šãæ°ããçè«ç解ææ¹æ³ãšããŠãéæ¯åãããã¿çŸ€ãçšãããšããã®ãæ¬ç 究èšç»ã®ç®çã§ãã.æ¬å¹ŽåºŠã¯,ãŸãæãç°¡åãªç³»ãšããŠ1次å
ã®éåååŠç³»ãèã,察称åã³é察称ãªé調åæ¯ååç³»ã«ã€ããŠ,ãã³ãã«å¹æãšé¢ä¿ããç©çéãéæåãããã¿çŸ€ã§è©äŸ¡ã,ãããã·ã¥ã¬ãã£ã³ã¬ãŒæ¹åŒã«ããçµæãéåžžã®ã€ã³ã¹ã¿ã³ãã³åžã¬ã¹è¿äŒŒã«ããçµæãæ¯ã¹ã.ãŸã,察称ãªé調åæ¯ååã®ç³»ã«ã€ããŠã¯,åºåºç¶æ
ãšç¬¬äžå±èµ·ç¶æ
ã®ãšãã«ã®ãŒã®ã£ããåã³æå¹4次çžäºäœçšã®å€§ããã«ã€ããŠå±æããã³ã·ã£ã«è¿äŒŒéæåãããã¿çŸ€ã§è©äŸ¡ãã.2次ã®è³ªéé
ãæ£ã®æ£åžžãªç³»ã§ã¯,æã
ã®çµæã¯,é調åçžäºäœçšã®å€§ããã®å
šé åã§éåžžã«è¯ã,ãã¡ããšçžäºäœçšå®æ°ã®ç¡é次ãŸã§ã®éæåå¹æãåãå
¥ããŠããããšãããã£ã.2次ã®è³ªéé
ãè² ã®ãããã2éäºæžåããã³ã·ã£ã«ã®å Žåã«ã¯ãé åã3ã€ã«åããŠèãã.é調åçžäºäœçšãåå倧ããåºåºç¶æ
ãäžå€®ã®å±±ããäžã«æ¥ãé åãš,åºåºç¶æ
ãäžå€®ã®å±±ããäžã«æœã,第äžå±èµ·ç¶æ
ã¯ãŸã å±±ã®äžã«ããäžçšåºŠã®é調åçžäºäœçšã®é åã§ã¯,æã
ã®çµæã¯ã»ãŒæ£ããå€ãåºããŠãã.第äžå±èµ·ç¶æ
ãå±±ã®äžã«æœã匱é調åçžäºäœçšã®é åã§ã¯,æã
ã®çµæã¯åŸã
ã«æªããªã,ã€ã³ã¹ã¿ã³ãã³ã«ããçµæãšã®ã¯ãã¹ãªãŒããŒãèµ·ãã.ãã®é åã,ãã€ãããã¯ãªãã³ãã«çŸè±¡ã«ãšã£ãŠéèŠãªé åã§ããã,æã
ã®æ¹æ³ã¯,ã€ã³ã¹ã¿ã³ãã³ã®åžã¬ã¹è¿äŒŒãæªããªãé åã§ååãªçµæãåºããã.次ã«,é察称ãªå Žåã«é²ãã ,ã€ã³ã¹ã¿ã³ãã³ã®æ¹æ³ã¯ãã®å Žåã«ã¯äœ¿ãã,工倫ãããã,éæåãããã¿çŸ€ã®æ¹æ³ã§ã¯,察称ãªå Žåãšå
šãåæ§ã«æ±ãããšãå¯èœã§ãã,ãã®çµæã,察称ãªå Žåãšã»ãŒåçã§ãã£ã.ãŸã,å€èªç±åºŠç³»,å€æ¬¡å
ç³»ãžã®æ¡åŒµã«éããŠã,ãããã¿çŸ€ã®æ¹æ³ã¯åæ§ã«é©çšå¯èœã§ãã,ãã³ãã«å¹æãæ±ãæ±çšã®æ°ããæ¹æ³ãšãªãããããšãããã£ã.ç 究課é¡/é åçªå·:08240216, ç 究æé(幎床):1996åºå
žïŒç 究課é¡ãéåãã³ãã«å¹æã®éæåç¹°ã蟌ã¿çŸ€ã«ããè©äŸ¡ã課é¡çªå·08240216ïŒKAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒïŒ ïŒhttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-08240216/ïŒãå å·¥ããŠäœ
éæåè«çç¹°ã蟌ã¿çŸ€ã®æ°ãã解ææ¹æ³
é沢倧åŠèªç¶ç§åŠç 究ç§æ¬ç 究èšç»ã®ç®çã¯ãéæåç¹°ã蟌ã¿çŸ€æ¹çšåŒã®è§£ãæ±ããéæåçãªç©çéãè©äŸ¡ããäºã«ãããä»å¹ŽåºŠã®ç 究ã§ã¯ã匷ãçžäºäœçšã®ã²ãŒãžçè«ã§ããQCDã«ããããã«ã€ã©ã«å¯Ÿç§°æ§ã®èªçºçç Žãã«ã€ããŠãéæåç¹°ã蟌ã¿çŸ€æ¹çšåŒã«ãã解æãé²ãããéæåç¹°ã蟌ã¿çŸ€æ¹çšåŒã¯ãæ¹çšåŒã解ã解空éãå¶éããããšã«ãã£ãŠè¿äŒŒãè¡ããããæäœæ¬¡ã®è¿äŒŒã§ããå±æããã³ã·ã£ã«ã«ããã解ã調ã¹ããšãQCDããã®ä»ã®ã«ã€ã©ã«å¯Ÿç§°æ§ã®èªçºçç Žããèµ·ããç³»ã«ãããŠã¯ãå±æããã³ã·ã£ã«è¿äŒŒããæŽã«å¶éãå ããŠäžéšã®Î²é¢æ°æåãæ®ããšãããããã·ã¥ãŠã£ã³ã¬ãŒã»ãã€ãœã³æ¹çšåŒã®æ¢¯åè¿äŒŒã®çµæãåçŸããããšã瀺ãããŠããã梯åè¿äŒŒã¯å¿
ç¶çã«ã²ãŒãžäžå€æ§ãç Žã£ãŠãããããã§ããã®è§£ãæ¡åŒµãããšããã²ãŒãžäžå€æ§ãæ倧éã«å埩ããããšãæå°åçãšããå±æããã³ã·ã£ã«è¿äŒŒã®ç¯å²ã§ã©ã®ãããªÎ²é¢æ°ã®éšåããšãããèå¯ããã梯åè¿äŒŒãå«ããã¯ãã¹ãã梯åè¿äŒŒãšåŒã°ããæ°ããβé¢æ°ã®éåãå®çŸ©ãããã®ç¡éåã®Î²é¢æ°ãè©äŸ¡ããæ¹æ³ãéçºãããé©åœãªæŒžååŒãå°ãããšã«ãã£ãŠãç¡éåã®Î²é¢æ°ã系統çã«èšç®ããŠããããšãã§ããããŸãããã®æ°ããβé¢æ°ã®éåã«ã€ããŠãã²ãŒãžäžå€æ§ã®ç Žããã©ããŸã§å埩ããããšãã§ããããå®éçã«è§£æäžã§ãããç 究課é¡/é åçªå·:09874061, ç 究æé(幎床):1997 â 1998åºå
žïŒç 究課é¡ãéæåè«çç¹°ã蟌ã¿çŸ€ã®æ°ãã解ææ¹æ³ ã課é¡çªå·09874061ïŒKAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒïŒ ïŒhttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-09874061/ïŒãå å·¥ããŠäœ
ç§åŠæè²ã«ãããITã掻çšããæŽå²ææ: ãä»®æ³åç©é€šãã®éçº
é沢倧åŠçå·¥ç 究åæ°ç©ç§åŠç³»æ¬ç 究èšç»ã®ç®çã¯,ææ°ã®ITæè¡ã掻çšããŠ,ç§åŠæè²ã«ãããæŽå²ææã®äœææ¹æ³ã®ç 究ãè¡ã,å®éã«ãããã¯ãŒã¯äžã«ãµãŒããŒãæ§ç¯ããŠçšŒåããªãã,äœæããææã®èç©æ¹æ³ãšå©çšæ¹æ³ã®ç 究ãå®è·µçã«è¡ãããšã«ãããç§åŠæè²ã«ãããŠ,çŽæ¥ã®å°éç§ç®ã®æè²ã«å ããŠ,ãã®åšèŸºåéã®åŠèã,åŠåç 究ã®æŽå²çãªçºå±ãåŠã¶ããšã¯,åŠçã®èŠéãåºã,æè»ãªæèå,å¹
åºãé©å¿åãé€ãäžã§æ¥µããŠéèŠã§ãããç¹ã«,ãããªæ®åœ±ã«ããç 究è
ã®è«è©±ãè¬åã®çŽæ¥äœéšåã³ã³ãã³ããå«ãWebäžã®ã€ã³ã¿ã©ã¯ãã£ããªææäœæ,ãµãŒããŒã«ããææã®ç³»çµ±çèç©ãæ¹åãæäŸãšãããã¯ãŒã¯ãä»ããæè»ãªå©çšæ¹æ³ã®éçºãã®å
šéçšãåºç€ããç 究ããå®éã«ãããã¿ã€ãã·ã¹ãã ãäœæããããšãç®çã§ãããå¹³æ19幎床ã«ãããç 究ææã¯ä»¥äžã®éãã§ããã1.çŽ ç²åç©çåŠã®çºå±ã®æŽå²ãé¡æãšãã,æŽå²ææã®äœæãé²ãããå¹³æ19幎床ã¯æ¹¯å·ãææ°žçèªçŸåšå¹Žã®å±ç€ºãè¬æŒäŒãåå°ã§è¡ãããã®ã§,ãã®èšé²ãè¡ã£ãããŸããé沢倧åŠããã³éæ²¢21äžçŽçŸè¡é€šã«ãããŠã湯å·ãææ°žçèªçŸåšå¹Žã®äŒç»å±ãè¡ã£ããé沢倧åŠè³æ通ããã³ç³å·çèªç¶å²è³æ通æèµã®ç¬¬åé«çåŠæ ¡ã®ç©çæ©åšããã®ä»è³æã®èª¿æ»ãè¡ã£ãŠ,æŽå²ææãšããŠã®å±ç€ºãè¡ã£ããç¹ã«äžéšã®å®éšæ©åšã«ã€ããŠã¯,çŸä»£å·¥èžæè¡ãçšããŠåŸ©å
åãäœæã,å®éã«äœåãããã2.20äžçŽåŸåã®ç©çåŠã«ãããåŠåã®çºå±ãæ¯ãã人ã
ãéããã·ã³ããžãŠã ãäŒç»ãéå¬ãããåºç€ç©çåŠç 究æã®ç 究èšç»ãšããŠææ¡ã,100äœåã®åå ãåŸãŠ3ç®éã«æž¡ã£ãŠ,å€ãã®è²Žéãªå ±åãšè°è«ããªããããã·ã³ããžãŠã ã®èšé²ã,ãããªèšé²ããå®å
šã«åçŸãã圢ã§äœæã,åºçããã3.ãããªèšé²,ç©çåŠå²ãç 究ã°ã«ãŒãé¢ä¿ã®è³æã®é»ååãæŽã«é²ããŠèç©ãããWebãµãŒããŒã®ãããã¿ã€ããäœæã,é¢ä¿è
å
ã«å
¬éããŠãããäžè¬å
¬éã®ããã«èäœæš©ãªã©ã®åé¡ãã¯ãªã¢ããæºåãããŠãããç 究課é¡/é åçªå·:17650237, ç 究æé(幎床):2005 â 2007åºå
žïŒãç§åŠæè²ã«ãããITã掻çšããæŽå²ææ=ãä»®æ³åç©é€šãã®éçºãç 究ææå ±åæžã課é¡çªå·17650237ïŒKAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒïŒïŒhttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-17650237/)ãå å·¥ããŠäœ
éåãã³ãã«å¹æã®éæåç¹°ã蟌ã¿çŸ€ã«ããè©äŸ¡
é沢倧åŠèªç¶ç§åŠç 究ç§éåãã³ãã«å¹æã®å
šãæ°ããçè«ç解ææ¹æ³ãšããŠ,éæåãããã¿çŸ€ãçšãããšããã®ãæ¬ç 究èšç»ã®ç®çã§ãããæ¬å¹ŽåºŠã¯,å幎床ã«ç¶ããŠããŸãæãç°¡åãªç³»ãšããŠ1次å
ã®éåååŠç³»ãèã,察称åã³é察称ãªé調åæ¯ååç³»ã«ã€ããŠ,ãã³ãã«å¹æãšé¢ä¿ããç©çéãéæåãããã¿çŸ€ã§è©äŸ¡ã,ãããã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã«ããçµæãéåžžã®ã€ã³ã¹ã¿ã³ãã³åžã¬ã¹è¿äŒŒã«ããçµæãæ¯ã¹ãããŸã,察称ãªé調åæ¯ååã®ç³»ã«ã€ããŠ,å±æããã³ã·ã£ã«è¿äŒŒéæåãããã¿çŸ€ã§ç©çéãè©äŸ¡ã,以åããã®è§£æãæŽçãããæã
ã®æ¹æ³ã¯,匱çµåã®æ¥µéã§ã¯è¯ãçµæãæªã åŸãããªããã®ã®ãã€ã³ã¹ã¿ã³ãã³ã®åžã¬ã¹è¿äŒŒãæªããªãé åã§ååãªçµæãåºããŠããã次ã«,ããçŸå®çãªé察称ããã³ã·ã£ã«å Žåã«é²ãã .,éåžžã®ã€ã³ã¹ã¿ã³ãã³æ³ã¯ãã®å Žåã«ã¯äœ¿ãã工倫ãããã,éæåãããã¿çŸ€ã®æ¹æ³ã§ã¯,察称ãªå Žåãšå
šãåæ§ã«æ±ãããšãå¯èœã§ãããç¹ã«ããšãã«ã®ãŒã®ã£ãããç空æåŸ
å€ã«ã€ããŠèª¿ã¹ããã¬ãŒã€ã³ã¹ã¿ã³ãæ³ã®çµæãšæ¯èŒãããã察称ããã³ã·ã£ã«ã®å Žåãšåæ§ã«ã匱çµå極é以å€ã§ã¯è¯ãçµæãåŸãäºãããã£ããä»å¹ŽåºŠç¹ã«é²ããäºã¯,å€ç²åç³»ã§ã®ãã³ãã«å¹æã®è§£æã§ãããæãç°¡åãªäŸãšããŠã2éäºæžåããã³ã·ã£ã«äžã®2ç²åã®ç³»ãèãããããã¯ã1ç²åã2次å
ã®éåãããŠããããšãèŠãäºãã§ããããã®2ç²åã®éã«çžäºäœçšãããæãæãããŠããã³ãã«å¹æã¯åŒ·ããªãã®ãã匱ããªãã®ãããèå³ã®ããç¹ã§ãããããã§ã2ç²åã®éã«åçŽãªå€é
åŒã§èšè¿°ãããçžäºäœçšãå ããæã®ãšãã«ã®ãŒã®ã£ããã®å€åããç¹°ã蟌ã¿çŸ€æ¹çšåŒã解ãäºã«ãã£ãŠæ±ããããã®çµæã®è§£æã¯ãŸãéäžã§ãããããã®çžäºäœçšãæåãšããæã®1次æåã®çµæãšæ¯èŒããŠãç¹°ã蟌ã¿çŸ€ã®è§£ãé©åãªçµæãäžããŠããäºã¯ç¢ºèªãããç 究課é¡/é åçªå·:09226212, ç 究æé(幎床):1997åºå
žïŒç 究課é¡ãéåãã³ãã«å¹æã®éæåç¹°ã蟌ã¿çŸ€ã«ããè©äŸ¡ ã課é¡çªå·09226212ïŒKAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒïŒ ïŒhttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-09226212/ïŒãå å·¥ããŠäœ
æ°èŠã«ã«ããã«éå é µçŽ ããã³ãã©ãªã¢åè«ç±æ¥é µçŽ ã®æ§é çç©åŠçç 究
çæ³¢å€§åŠ (University of Tsukuba)201
ã²ãŒãžå Žã®çè«ã®éæåç解ææ¹æ³ã®éçºãšå¿çš
é沢倧åŠçå·¥ç 究åãããŸã§ã®éæåçãªè§£ææ¹æ³ã¯çµåå®æ°ä»¥å€ã®ãã©ã¡ã¿ãæã¡èŸŒã¿ããã®ãã©ã¡ã¿ã«ã€ããŠã®çŽæ°å±éæ³ããšãã®ã§ããã®ãã©ã¡ã¿ã«ã€ããŠã®åææ§ãåé¡ã«ãªããéæåãããã¿çŸ€ã«ããæ¹æ³ã¯ãæ瀺çãªæå³ã§ã®å°ãããã©ã¡ã¿ã«ããå±éã¯ãªããçè«ãè¡šçŸããé¢æ°ç©ºéãéšå空éã§è¿äŒŒãããã®éšå空éãæ¡å€§ããæ¹æ³ããšããéæšã¯ããã®æ¹æ³ãçšããŠãçŽ ç²åè«ã®æ ¹å¹¹çãªèª²é¡ã§ããã²ãŒãžçè«ã«ãããã«ã€ã©ã«å¯Ÿç§°æ§ã®èªçºçç Žãã«ã€ããŠã®ç 究ãé²ãããç¹ã«ãã²ãŒãžäžå€æ§ãå埩ããããã®åŠæ¹ãæé枩床ãæéå¯åºŠã®ç¶æ³ã§ã®ã«ã€ã©ã«å¯Ÿç§°æ§ã®çžæ§é ãããŒã¬ã³ãäžå€ã§ãªãæå¹äœçšã®åœ±é¿ãã«ã€ããŠèª¿ã¹ãããŸããæ°ããã¿ã€ãã®çžè»¢ç§»çæãšããŠãç¡éè·é¢çžäºäœçšãããå Žåã®è§£ææ¹æ³ãéçºãããæãç°¡åãªã€ãžã³ã°æš¡åãçšããŠãæéã¬ã³ãžã¹ã±ãŒãªã³ã°æ³ãæ°ãã«æèµ·ãããã§ãŒã¿é¢æ°ãå©çšããŠçžè»¢ç§»ç¹ãKTçžè»¢ç§»ã®èšçææ°ãæ±ããæ¹æ³ã瀺ããã平山ã¯Skyrmeæš¡åãšFaddeevæš¡åã®å³å¯è§£ããšãã«ã®ãŒå€ã«é¢ããŠæ°ããçš®ã
ã®ç¥èŠãåŸãããšãã§ãããFaddeevæš¡åã®éåãšãã«ã®ãŒé
ãçžäºäœçšé
ã«ããéã¿é¢æ°ãä»ãå ããæš¡åã¯å³å¯ã«è§£ããããšã瀺ãããSkyrmeæš¡åã®äžçŸ€ã®2å€æ°å³å¯è§£ãåŸãããã®è§£ã¯çžäºäœçšå®æ°ã«äŸåã,ããªãªã³æ°å¯åºŠ0ãæã€ãSkvrmeæš¡åã®äžçŸ€ã®3å€æ°å³å¯è§£ãåŸãããã®è§£ã¯æ¥åé¢æ°ã§èšè¿°ããã0ã§ãªãããªãªã³æ°å¯åºŠãæã€ãç¹å¥ãªå ŽåãšããŠdomain wall解ãååšããããšãæ°å€çã«ç€ºãããSU(2)ã²ãŒãžå Žãã¡ãã³é
äœããšãæã®Faddeev-Niemiå Žãmonopole-antimonopole察ãšçåãããã®ã§ããããšã瀺ãããSkyrmionã®profile functionãšããŠãããŸã§æåãšãããŠãããã®ãšã¯ç°ãªãé¢æ°åœ¢ã®ãã®ãèå¯ã,ãããããšãã«ã®ãŒå€ãåŸããçŽ ç²åã®æšæºçè«ããã³ãããè¶ããè¶
察称æšæºæš¡åãªã©ã«ã¯ããã©ã¡ãŒã¿ã®éå±€æ§ã«é¢ããŠçš®ã
ã®åé¡ç¹ãããã寺尟ã¯ããããã®åé¡ãäœããã®å¯Ÿç§°æ§ã®ç ŽããšããŠã§ã¯ãªããå Žã®éåè«ã®åååŠã«ãã£ãŠèª¬æãããããªçè«çå¯èœæ§ã«ã€ããŠãæ§ã
ãªèŠ³ç¹ããèå¯ãè¡ã£ããç¹ã«å€§ããªç°åžžæ¬¡å
ã«ãã£ãŠéå±€çæ§é ãå°ãæš¡åã®èå¯ãäžå¿ã«è¡ããçŽ ç²åã®è³ªééå±€æ§åé¡ãè¶
察称ãã¬ãŒããŒåé¡ãæšæºçè«ããã³è¶
察称æšæºæš¡åã«ãããããã°ã¹è³ªéã®éå±€æ§åé¡ã«å¯Ÿããæ°ããæ©æ§ãæš¡åãæå±ããããã®åååŠã®è§£æã®æ段ãšããŠãäž»ã«éæåçãªç¹°ã蟌ã¿çŸ€ãçšããããç¹ã«èµ€å€åºå®ç¹ã®ãã(è¶
察称)ã²ãŒãžçè«ã®ç¹°ã蟌ã¿çŸ€ã®å®åŒåãé²ãããæè¿ã§ã¯LHCã§ã®çºèŠãæåŸ
ãããŠããããã°ã¹ç²åã®æ°ããæš¡åãäžãããã®å
·äœçãªæ©æ§ãçŸè±¡è«çãªæŽåæ§ã«ã€ããŠè©³ãã調ã¹ããK-I. A studied the non-perturbative renormalization group method to investigate the dynamical chiral symmetry breaking in gauge theories. The mean field method so far like the Schwinger-Dyson equation suffers a serious gauge dependence. The non-perturbative renormalization group beta functions can be improved to give less gauge dependent physical results by taking account of non-ladder type diagrams. The chiral phase structures in the hot and dense QCD matter is a hot topic in the high energy physics and nuclear physics, and the non-perturbative renormalization group beta function in the hot and dense states are evaluated and the importance of the effective potential and the Lorentz non-invariant operators are found. Also, the infinite range interactions are studied with the simplest Ising model. Introducing a new method of finite range scaling, we evaluate the critical coupling constant and the exponent by referring to the zeta function.M. H investigated Skyrme model and Fadeev model and got various new results about the exact solutions and energy eigen values. Fadeev model with a weight function for the kinetic term or interaction terms is proved to be solved exactly. Two parameter exact solutions for Skyrme model are found, which depends on the interaction constant and have vanishing Baryon number. Three parameter exact solution for Skyrme model are given by elliptic functions and they have non-vanishing Baryon number. As a special case for this class of solutions, we confirm a domain wall solution numerically. In SU (2) gauge theory, the Fadeev-Niemi field for the Melon configuration is interpreted as a monopole-antimonopole pair. We tried a new profile function for Skyrmion and got lower energy eigen values.H, T, studied mainly origin of large hierarchy in the parameters of the standard model of elementary particles as well as the supersymmetric models from dynamical point of view. Especially he considered the renormalization properties of field theories possessing infrared fixed points and studied role of large anomalous dimensions to realize hierarchical parameters in various models. Explicitly, he considered various models leading to the hierarchy in masses of elementary particles, universal masses of the superparticles in supersymmetric extensions so as not to generate the flavor changing neutral currents, and the mass hierarchy of the Higgs particle in the standard model as well as the supersymmetric extension. The dynamical properties of the models were analyzed by means of non-perturbative renormalization group. H. T also developed the analysis of renormalization group analysis of (supersymmetric) gauge theories with infrared fixed points simultaneously.ç 究課é¡/é åçªå·:13135211, ç 究æé(幎床):2001-2006åºå
žïŒãã²ãŒãžå Žã®çè«ã®éæåç解ææ¹æ³ã®éçºãšå¿çšãç 究ææå ±åæžã課é¡çªå·13135211ïŒKAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒïŒïŒhttps://kaken.nii.ac.jp/ja/report/KAKENHI-PROJECT-13135211/131352112006kenkyu_seika_hokoku_gaiyo/)ãå å·¥ããŠäœ
éæåãããã¿çŸ€ã«ããã«ã€ã©ã«å¯Ÿç§°æ§ã®ç Žãã®è§£æ
匷ãçžäºäœçšã«ããã«ã€ã©ã«å¯Ÿç§°æ§ã®ç®çºçç Žããšãã®çžæ§é ã¯ãçŽ ç²å質éã®èª¬æããé«æž©ãé«å¯åºŠã§ã®ç©è³ªã®è«žæ§è³ªã«ãšã£ãŠæ¬è³ªçãªèŠçŽ ã§ãããæ¬ç 究èšç»ã§ã¯ãéæåãããã¿çŸ€ãçšããéåè²ååŠã®äœãšãã«ã®ãŒæå¹çè«ã®è§£æææ³ãçºå±ãããŠãã«ã€ã©ã«å¯Ÿç§°æ§ã®èªçºçç Žããèšè¿°ããæå¹ããã³ã·ã£ã«ã®èšç®æ¹æ³ã解ææ¹æ³ã®ç 究ãé²ãããå¯åºŠãããåªè³ªäžã§ã®ãéæåãããã¿çŸ€æ¹çšåŒã®è§£ææ¹æ³ã«ã€ããŠåºç€çãªèå¯ãè¡ããåŸæ¥ã®èšç®æ¹æ³ã§ã¯äžååã§ããããšãæããã«ãããè£å©å Žã®æ¹æ³ãçšããŠãæ£ããèšç®ãè¡ãããšãQCDã®ããŒã¿é¢æ°ã«ã€ããŠã®å¯åºŠå¹æããã¡ããšåãå
¥ããããšãç¶ãç®æšãšãªãã ãŸããèªçºç察称æ§ã®ç Žãã®åååŠãåºç€çãªåé¡ã§åæ€èšããããã«ã1次å
ã®éåååŠç³»ãç¹ã«2éäºæžç³»ã«ã€ããŠãéæåãããã¿çŸ€ã«ãã解ææ¹æ³ã®æ€èšããããªã£ããããããdecimationã®æ¹æ³ãè¿œæ±ãããããŸã§ã«ãªã粟床ã§ã®èšç®çµæãåŸãããããšã確èªãããããã«ãç°å¢ã«ããããç³»ãšããŠããšãã«ã®ãŒæ£éžå¹æãåãå
¥ããè©äŸ¡ãè¡ãæ¹æ³ãçºæ¡ããéæåãããã¿çŸ€ã«ãã解æãè¡ããåŸæ¥ã®ã€ã³ã¹ã¿ã³ãã³ãšæåã«ããè¿äŒŒèšç®ãšç°ãªãçµæãæåºããã åæã«ãæ ŒåQCDã«ããã¢ã³ãã«ã«ãã·ãã¥ã¬ãŒã·ã§ã³ã§ã®èšç®ãéããŠãé«æž©ã»é«å¯åºŠã®ç¶æ
ã解æããæ¹æ³ã®åºç€çãªç 究ã«ã€ããŠã¯ãåæ
è
ãäžå¿ã«é²ãããThe spontaneous breakdown of the chiral symmetry and its phase structure due to the strong interaction is an important issue for understanding the origin of the mass of elementary particles and for the basic properties of states at high temperature and at high density. This research project serves to develop the analysis method of the low energy effective theory of the quantum chromodynamics by using the non-perturbative renormalization group. We calculate the effective potential to describe the spontaneous breakdown of the chiral symmetry and investigate the basic techniques to analyze the phase structures.In the medium of the non-zero density of the baryon number, the previously adopted way of finding the spontaneous symmetry breaking of the chiral symmetry is found to be incorrect. It is necessary to incorporate the auxiliary fields to describe the correct renormalization group flows. Also we need the finite density corrections to the QCD beta function. These are the next subjects t o be attacked.In order to deeply understand the fundamental issues of the dynamics of the spontaneous symmetry breakdown, we apply the non-perturbative renormalization group method to the quantum mechanics of one-dimensional potential problem including the so-called double well potential. We develop the decimation renormalization group method and successfully calculate the free energy with quite a high precision. Also we attacked the dissipative quantum systems by this method to evaluate the critical dissipation causing the quantum to classical phase transition. Our results are different quantitatively from the previous calculations using the instanton method with the perturbation theory. Detailed comparison will be in order.Using the Monte Carlo simulation of the lattice QCD, some important features are obtained about the high temperature and finite densiy QCD, which have been carried out mainly by co-investigators. These basic results will serve for future analyses for the high density phase transition and the color super conductivity transitions.ç 究課é¡/é åçªå·:13440076, ç 究æé(幎床):2001â2004åºå
žïŒãéæåãããã¿çŸ€ã«ããã«ã€ã©ã«å¯Ÿç§°æ§ã®ç Žãã®è§£æãç 究ææå ±åæžã課é¡çªå·13440076 (KAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒ)ãããæ¬æããŒã¿ã¯èè
çå ±åæžããäœ
- âŠ