21 research outputs found
Organosilica nanoparticles containing sodium borocaptate (BSH) provide new prospects for boron neutron capture therapy (BNCT): efficient cellular uptake and enhanced BNCT efficacy
Boron neutron capture therapy (BNCT), a method based on the fission of boron-10 upon neutron irradiation, has emerged as an attractive option for radiation therapy. To date, the main drugs used in BNCT are 4-boronophenylalanine (BPA) and sodium borocaptate (BSH). While BPA has been extensively tested in clinical trials, the use of BSH has been limited, mainly due to its poor cellular uptake. Here, we describe a novel type of mesoporous silica-based nanoparticle containing BSH covalently attached to a nanocarrier. Synthesis and characterization of these nanoparticles (BSH-BPMO) are presented. The synthetic strategy involves a click thiol–ene reaction with the boron cluster, providing hydrolytically stable linkage with the BSH in four steps. The BSH-BPMO nanoparticles were efficiently taken up into cancer cells and accumulated in the perinuclear region. Inductively coupled plasma (ICP) measurements of boron uptake in cells highlight the important role of the nanocarrier in the enhancement of boron internalization. BSH-BPMO nanoparticles were also taken up and distributed throughout tumour spheroids. BNCT efficacy was examined by the neutron exposure of the tumour spheroids. BSH-BPMO loaded spheroids were completely destroyed upon neutron irradiation. In contrast, neutron irradiation of tumour spheroids loaded with BSH or BPA resulted in significantly less spheroid shrinkage. The significant difference in BNCT efficacy of the BSH-BPMO was correlated with the improved boron uptake via the nanocarrier. Overall, these results demonstrate the critical role of the nanocarrier in BSH internalization and the enhanced BNCT efficacy of the BSH-BPMO compared with BSH and BPA, two drugs used in BNCT clinical trials
Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass
Recent advances in our understanding of the biology of muscle, and how anabolic and catabolic stimuli interact to control muscle mass and function, have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle occurs as a consequence of several chronic diseases (cachexia) as well as normal aging (sarcopenia). Although many negative regulators [Atrogin-1, muscle ring finger-1, nuclear factor-kappaB (NF-κB), myostatin, etc.] have been proposed to enhance protein degradation during both sarcopenia and cachexia, the adaptation of mediators markedly differs among these conditions. Sarcopenic and cachectic muscles have been demonstrated to be abundant in myostatin- and apoptosis-linked molecules. The ubiquitin–proteasome system (UPS) is activated during many different types of cachexia (cancer cachexia, cardiac heart failure, chronic obstructive pulmonary disease), but not many mediators of the UPS change during sarcopenia. NF-κB signaling is activated in cachectic, but not in sarcopenic, muscle. Some studies have indicated a change of autophagic signaling during both sarcopenia and cachexia, but the adaptation remains to be elucidated. This review provides an overview of the adaptive changes in negative regulators of muscle mass in both sarcopenia and cachexia
Patient Derived Chicken Egg Tumor Model (PDcE Model): Current Status and Critical Issues
Chorioallantoic membrane assay (CAM assay) using fertilized chicken eggs has been used for the study of tumor formation, angiogenesis and metastasis. Recently, there is growing realization that this system provides a valuable assay for a patient-derived tumor model. Several reports establish that tumor samples from cancer patients can be used to reproduce tumor in the chicken egg. High transplantation efficiency has been achieved. In this review, we discuss examples of transplanting patient tumors. We then discuss critical issues that need to be addressed to pursue this line of experiments. The patient-derived chicken egg model (PDcE model) has an advantage over other models in its rapid tumor formation. This raises the possibility that the PDcE model is valuable for identifying optimum drug for each individual patient
Tumor Accumulation of PIP-Based KRAS Inhibitor KR12 Evaluated by the Use of a Simple, Versatile Chicken Egg Tumor Model
Background: The KRAS inhibitor KR12, based on pyrrole-imidazole polyamide (PIP), has been developed and shown to exhibit efficacy in mouse experiments. Because some PIP species exhibit tumor accumulation capability, we decided to evaluate whether the PIP portion of KR12 exhibits tumor accumulation. We employed the CAM assay that provides a simple method for tumor accumulation evaluation. Methods: KR12 PIP was synthesized and conjugated to TAMRA to produce a fluorescently labeled reagent (KR12-TAMRA). This reagent was injected into a fertilized chicken egg that has been transplanted with human cancer cells. Distribution of the red fluorescence was examined by cutting out tumor as well as various organs from the embryo. Results: The red fluorescence of KR12-TAMRA was found to overlap with the green fluorescence of the tumor formed with GFP-expressing cancer cells. We also observed nuclear localization of KR12-TAMRA. Treatment of KR12 that contained the alkylating agent CBI in the tumor-bearing chicken egg resulted in tumor growth inhibition. Conclusions: KR12 contains a PIP that has two key features: tumor accumulation and nuclear localization. KR12 conjugated with CBI exhibits inhibition of tumor growth in the CAM model
Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: Implications for the Auger therapy
単色X線とナノ粒子により、がん患部でX線エネルギー効果を増幅する方法の開発に成功 --オージェ電子発見から100年、放射線がん治療の新境地を開く--. 京都大学プレスリリース. 2019-10-02.Synchrotron generated monochromatic X-rays can be precisely tuned to the K-shell energy of high Z materials resulting in the release of the Auger electrons. In this work, we have employed this mechanism to destruct tumor spheroids. We first loaded gadolinium onto the surface of mesoporous silica nanoparticles (MSNs) producing gadolinium-loaded MSN (Gd-MSN). When Gd-MSN was added to the tumor spheroids, we observed efficient uptake and uniform distribution of Gd-MSN. Gd-MSN also can be taken up into cancer cells and localize to a site just outside of the cell nucleus. Exposure of the Gd-MSN containing tumor spheroids to monochromatic X-ray beams resulted in almost complete destruction. Importantly, this effect was observed at an energy level of 50.25 keV, but not with 50.0 keV. These results suggest that it is possible to use precisely tuned monochromatic X-rays to destruct tumor mass loaded with high Z materials, while sparing other cells. Our experiments point to the importance of nanoparticles to facilitate loading of gadolinium to tumor spheroids and to localize at a site close to the nucleus. Because the nanoparticles can target to tumor, our study opens up the possibility of developing a new type of radiation therapy for cancer
Water-Soluble Phosphorescent Ruthenium Complex with a Fluorescent Coumarin Unit for Ratiometric Sensing of Oxygen Levels in Living Cells
Dual emission was applied to a molecular probe for the
ratiometric sensing of oxygen concentration in a living system. We
prepared ruthenium complexes possessing a coumarin unit (Ru–Cou),
in which the <sup>3</sup>MLCT phosphorescence of the ruthenium complex
was efficiently quenched by molecular oxygen, whereas the coumarin
unit emitted constant fluorescence independent of the oxygen concentration.
The oxygen status could be determined precisely from the ratio of
phosphorescence to fluorescence. We achieved the molecular imaging
of cellular oxygen levels using Ru–Cou possessing an alkyl
chain, which provided appropriate lipophilicity to increase cellular
uptake
Designing Mesoporous Silica Nanoparticles to Overcome Biological Barriers by Incorporating Targeting and Endosomal Escape
The several biological barriers that nanoparticles might encounter when administered to a patient constitute the major bottleneck of nanoparticle-mediated tumor drug delivery, preventing their successful translation into the clinic and reducing their therapeutic profile. In this work, mesoporous silica nanoparticles have been employed as a platform to engineer a versatile nanomedicine able to address such barriers, achieving (a) excessive premature drug release control, (b) accumulation in tumor tissues, (c) selective internalization in tumoral cells, and (d) endosomal escape. The nanoparticles have been decorated with a self-immolative redox-responsive linker to prevent excessive premature release, to which a versatile and polyvalent peptide that is able to recognize tumoral cells and induce the delivery of the nanoparticles to the cytoplasm via endosomal escape has been grafted. The excellent biological performance of the carrier has been demonstrated using 2D and 3D in vitro cell cultures and a tumor-bearing chicken embryo model, demonstrating in all cases high biocompatibility and cytotoxic effect, efficient endosomal escape and tumor penetration, and accumulation in tumors grown on the chorioallantoic membrane of chicken embryos.Japan Society for the Promotion of Science (JSPS)Japan Agency for Medical ResearchDepto. de Química en Ciencias FarmacéuticasFac. de FarmaciaTRUEpu