589 research outputs found

    Catalyst Development for Higher Alcohol Synthesis (HAS)

    Get PDF
    This study investigated the effects of partial substitution at the A- and/or B-site of LaCoO3 perovskite catalysts (ABO3) on higher alcohol synthesis (HAS) from syngas. The catalyst properties and catalytic performances were well studied for the La1-xSrxCo1-y-zNiyCuzO3 catalysts. A-site substitution affected CO conversion, while B-site substitution affected higher alcohol selectivity. The effects of alkali promoters and reaction conditions were also discussed. This study proved that partially-substituted perovskites are promising candidates for the enhancement of HAS

    Field-aware Calibration: A Simple and Empirically Strong Method for Reliable Probabilistic Predictions

    Full text link
    It is often observed that the probabilistic predictions given by a machine learning model can disagree with averaged actual outcomes on specific subsets of data, which is also known as the issue of miscalibration. It is responsible for the unreliability of practical machine learning systems. For example, in online advertising, an ad can receive a click-through rate prediction of 0.1 over some population of users where its actual click rate is 0.15. In such cases, the probabilistic predictions have to be fixed before the system can be deployed. In this paper, we first introduce a new evaluation metric named field-level calibration error that measures the bias in predictions over the sensitive input field that the decision-maker concerns. We show that existing post-hoc calibration methods have limited improvements in the new field-level metric and other non-calibration metrics such as the AUC score. To this end, we propose Neural Calibration, a simple yet powerful post-hoc calibration method that learns to calibrate by making full use of the field-aware information over the validation set. We present extensive experiments on five large-scale datasets. The results showed that Neural Calibration significantly improves against uncalibrated predictions in common metrics such as the negative log-likelihood, Brier score and AUC, as well as the proposed field-level calibration error.Comment: WWW 202

    Effective Vortex Mass from Microscopic Theory

    Full text link
    We calculate the effective mass of a single quantized vortex in the BCS superconductor at finite temperature. Based on effective action approach, we arrive at the effective mass of a vortex as integral of the spectral function J(ω)J(\omega) divided by ω3\omega^3 over frequency. The spectral function is given in terms of the quantum-mechanical transition elements of the gradient of the Hamiltonian between two Bogoliubov-deGennes (BdG) eigenstates. Based on self-consistent numerical diagonalization of the BdG equation we find that the effective mass per unit length of vortex at zero temperature is of order m(kfξ0)2m (k_f \xi_0)^2 (kfk_f=Fermi momentum, ξ0\xi_0=coherence length), essentially equaling the electron mass displaced within the coherence length from the vortex core. Transitions between the core states are responsible for most of the mass. The mass reaches a maximum value at T≈0.5TcT\approx 0.5 T_c and decreases continuously to zero at TcT_c.Comment: Supercedes prior version, cond-mat/990312

    CREB activity maintains the survival of cingulate cortical pyramidal neurons in the adult mouse brain

    Get PDF
    Cyclic AMP-responsive element binding protein (CREB) activity is known to contribute to important neuronal functions, such as synaptic plasticity, learning and memory. Using a microelectroporation technique to overexpress dominant negative mutant CREB (mCREB) in the adult mouse brain, we found that overexpression of mCREB in the forebrain cortex induced neuronal degeneration. Our findings suggest that constitutively active CREB phosphorylation is important for the survival of mammalian cells in the brain

    An Effective Way of J Wave Separation Based on Multilayer NMF

    Get PDF
    J wave is getting more and more important in the clinical diagnosis as a new index of the electrocardiogram (ECG) of ventricular bipolar, but its signal often mixed in normal ST segment, using the traditional electrocardiograph, and diagnosed by experience cannot meet the practical requirements. Therefore, a new method of multilayer nonnegative matrix factorization (NMF) in this paper is put forward, taking the hump shape J wave, for example, which can extract the original J wave signal from the ST segment and analyze the accuracy of extraction, showing the characteristics of hump shape J wave from the aspects of frequency domain, power spectrum, and spectral type, providing the basis for clinical diagnosis and increasing the reliability of the diagnosis of J wave

    Salient Object Detection in RGB-D Videos

    Full text link
    Given the widespread adoption of depth-sensing acquisition devices, RGB-D videos and related data/media have gained considerable traction in various aspects of daily life. Consequently, conducting salient object detection (SOD) in RGB-D videos presents a highly promising and evolving avenue. Despite the potential of this area, SOD in RGB-D videos remains somewhat under-explored, with RGB-D SOD and video SOD (VSOD) traditionally studied in isolation. To explore this emerging field, this paper makes two primary contributions: the dataset and the model. On one front, we construct the RDVS dataset, a new RGB-D VSOD dataset with realistic depth and characterized by its diversity of scenes and rigorous frame-by-frame annotations. We validate the dataset through comprehensive attribute and object-oriented analyses, and provide training and testing splits. Moreover, we introduce DCTNet+, a three-stream network tailored for RGB-D VSOD, with an emphasis on RGB modality and treats depth and optical flow as auxiliary modalities. In pursuit of effective feature enhancement, refinement, and fusion for precise final prediction, we propose two modules: the multi-modal attention module (MAM) and the refinement fusion module (RFM). To enhance interaction and fusion within RFM, we design a universal interaction module (UIM) and then integrate holistic multi-modal attentive paths (HMAPs) for refining multi-modal low-level features before reaching RFMs. Comprehensive experiments, conducted on pseudo RGB-D video datasets alongside our RDVS, highlight the superiority of DCTNet+ over 17 VSOD models and 14 RGB-D SOD models. Ablation experiments were performed on both pseudo and realistic RGB-D video datasets to demonstrate the advantages of individual modules as well as the necessity of introducing realistic depth. Our code together with RDVS dataset will be available at https://github.com/kerenfu/RDVS/
    • …
    corecore