38 research outputs found

    Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms

    Get PDF

    Acanthamoeba: A Rare Primary Cause of Rhinosinusitis

    No full text

    Active muscle length reduction progressively damages soleus in hindlimb-suspended rabbits

    No full text
    This study describes the morphologic changes in rabbit soleus muscle following hindlimb suspension (HS) for 1 to 4 weeks (group A); or following HS with hindfeet passively dorsiflexed, by means of an elastic band, for 1 to 2 weeks (group B). In the latter, elastic band use allowed phasic contractions of foot extensor muscles against resistance and prevented 35% chronic soleus shortening, which occurred in group A animals. In group A, the soleus revealed progressive muscle atrophy and myofibrillar damage. Myofibrils underwent dissolution, muscle regeneration was ineffective, and adipose tissue developed from about 2-week suspension onward. Conversely, passive dorsiflexion of unloaded hindfeet was essential in maintaining mass and structural muscle integrity in the soleus of group B. It is hereby demonstrated that HS-induced soleus damage in the rabbit is progressive, and can be prevented, avoiding long-term shortening of soleus and its phasic unloaded contractions. Soleus sensitivity to unloading conditions, such as HS, tenotomy, and hypogravity, may depend on the particular physiology of this tonic antigravity muscle, engaged mainly in developing long-lasting isometric contractions in a stretched length
    corecore