38 research outputs found
Experimental Investigation on Hygroscopic Aging of Glass Fiber Reinforced Vinylester Resin Composites
The hygroscopic behavior of vinylester resin and high strength glass fiber reinforced vinylester resin composites were examined here, including weight change and the resulting degradation of mechanical properties. The prepared resin and composites specimens were immersed in deionized water and artificial seawater with an applied temperature of 70 °C, and then the specimens were weighed at specified time intervals in combination with the observation of surface morphologies using a scanning electron microscope. Identification of variations of functional groups was also carried out using Fourier-transform infrared spectroscopy. Meanwhile, the mechanical properties for resin and the composite specimens were tested periodically. The observations on surficial morphologies and the test on weight change display that the vinylester resin hydrolyzes seriously after immersion in deionized water, and that the embedment of glass fiber effectively inhibits the moisture absorption and hydrolysis for resin matrix in composites. The results from the mechanical properties test reveal that the tensile strength of pure resin decreases by 35.3% after 7 days’ immersion and keeps small fluctuation in the sequent immersion duration. However, the compressive strength of pure resin consistently dwells at 100 ± 2 MPa during immersion. After immersion for 90 days, the tensile strength decreases by 28.5% and 38.4%, the compressive strength reduces by 7.2% and 16.6%, and the in-plane shear strength reduces by 16.6% and 15.2% for the composites immersed into deionized water and artificial seawater, respectively. The main highlights of this paper are that it provides a more comprehensive mechanical properties test in combination with the microscopic characterization on a matrix and its composites to reveal the aging behavior of composites under a hygroscopic environment
Improved Hapke Model to Characterize Soil Moisture Content Variation
The Hapke model has been widely used in the field of soil remote sensing. However, the latest development of the Hapke model (i.e., Hapke-HSR model) adopted a simple hypothesis to consider the influence of the soil moisture content (SMC), which brought great difficulties to SMC parameter inversion. This paper presents a method to improve the Hapke model using the improved multilayer radiative transfer model of soil reflectance (MARMIT-2), which can effectively improve the ability of the Hapke-HSR model to characterize the variation in the SMC. Finally, we used the soil database to comprehensively verify the ability of the improved Hapke model. The results show that the improved Hapke can effectively characterize the spectral characteristics of soil and show a higher fitting accuracy (RMSE = 0.009) compared with the Hapke-HSR model (RMSE = 0.031), especially at a high SMC (≥30%). Therefore, the improved Hapke model can better understand soil physical properties and improve the inversion accuracy of soil–vegetation physical parameters, which can be used to enhance agricultural water use efficiency
The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites
In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame-retardant mechanism of the APP/PETAT IFR system. The results indicated that the efficient flame retardancy of PP/IFR composites could be attributed to the synergism of the free radical-quenching and char layer-protecting mechanisms in the gas phase and condense phase, respectively
Wirtschaftsentwicklung und Wirtschaftsreform in Wuhan
Available from Bibliothek des Instituts fuer Weltwirtschaft, ZBW, Duesternbrook Weg 120, D-24105 Kiel W 788 (6) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman