4 research outputs found

    Occurrence and Diversity of Clinically Important Vibrio Species in the Aquatic Environment of Georgia

    Get PDF
    Among the more than 70 different Vibrio species inhabiting marine, estuarine, and freshwater ecosystems, 12 are recognized as human pathogens. The warm subtropical climate of the Black Sea coastal area and inland regions of Georgia likely provides a favorable environment for various Vibrio species. From 2006 to 2009, the abundance, ecology, and diversity of clinically important Vibrio species were studied in different locations in Georgia and across seasons. Over a 33-month period, 1,595 presumptive Vibrio isolates were collected from the Black Sea (n=657) and freshwater lakes around Tbilisi (n=938). Screening of a subset of 440 concentrated and enriched water samples by PCR-electrospray ionization/mass spectrometry (PCR-ESI/MS) detected the presence of DNA from eight clinically important Vibrio species: V. cholerae, V. parahaemolyticus, V. vulnificus, V. mimicus, V. alginolyticus, V. harveyi, V. metschnikovii, and V. cincinnatiensis. Almost ninety percent of PCR/ESI-MS samples positive for Vibrio species were collected from June through November. Three important human pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) were detected in 62.8%, 37.8%, and 21.4% of samples testing positive for vibrios, respectively. The results of these activities suggest that natural reservoirs for human-pathogenic Vibrios exist in Georgian aquatic environments. Water temperature at all sampling sites was positively correlated with the abundance of clinically important Vibrio spp. (except V. metschnikovii) and salinity was correlated with species composition at particular Black Sea sites as well as inland reservoirs

    Role of Shrimp Chitin in the Ecology of Toxigenic Vibrio cholerae and Cholera Transmission

    Get PDF
    Seasonal plankton blooms correlate with occurrence of cholera in Bangladesh, although the mechanism of how dormant Vibrio cholerae, enduring interepidemic period in biofilms and plankton, initiates seasonal cholera is not fully understood. In this study, laboratory microcosms prepared with estuarine Mathbaria water (MW) samples supported active growth of toxigenic V. cholerae O1 up to 7 weeks as opposed to 6 months when microcosms were supplemented with dehydrated shrimp chitin chips (CC) as the single source of nutrient. Bacterial counting and detection of wbe and ctxA genes were done employing culture, direct fluorescent antibody (DFA) assay, and multiplex-polymerase chain reaction methods. In MW microcosm, the aqueous phase became clear as the non-culturable cells settled, whereas the aqueous phase of the MW–CC microcosm became turbid from bacterial growth stimulated by chitin. Bacterial chitin degradation and biofilm formation proceeded from an initial steady state to a gradually declining bacterial culturable count. V. cholerae within the microenvironments of chitin and chitin-associated biofilms remained metabolically active even in a high acidic environment without losing either viability or virulence. It is concluded that the abundance of chitin that occurs during blooms plays an important role in the aquatic life cycle of V. cholerae and, ultimately, in the seasonal transmission of cholera

    Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors

    No full text
    Vibrio parahaemolyticus, autochthonous to estuarine, marine, and coastal environments throughout the world, is the causative agent of food-borne gastroenteritis. More than 80 serotypes have been described worldwide, based on antigenic properties of the somatic (O) and capsular (K) antigens. Serovar O3:K6 emerged in India in 1996 and subsequently was isolated worldwide, leading to the conclusion that the first V. parahaemolyticus pandemic had taken place. Most strains of V. parahaemolyticus isolated from the environment or seafood, in contrast to clinical strains, do not produce a thermostable direct hemolysin (TDH) and/or a TDH-related hemolysin (TRH). Type 3 secretion systems (T3SSs), needle-like apparatuses able to deliver bacterial effectors into host cytoplasm, were identified as triggering cytotoxicity and enterotoxicity. Type 6 secretion systems (T6SS) predicted to be involved in intracellular trafficking and vesicular transport appear to play a role in V. parahaemolyticus virulence. Recent advances in V. parahaemolyticus genomics identified several pathogenicity islands (VpaIs) located on either chromosome in both epidemic and pandemic strains and comprising additional colonization factors, such as restriction-modification complexes, chemotaxis proteins, classical bacterial surface virulence factors, and putative colicins. Furthermore, studies indicate strains lacking toxins and genomic regions associated with pathogenicity may also be pathogenic, suggesting other important virulence factors remain to be identified. The unique repertoire of virulence factors identified to date, their occurrence and distribution in both epidemic and pandemic strains worldwide are described, with the aim of highlighting the complexity of V. parahaemolyticus pathogenicity as well as its dynamic genome

    Molecular Diversity and Predictability of Vibrio parahaemolyticus along the Georgian coastal zone of the Black Sea

    No full text
    Vibrio parahaemolyticus is a leading cause of seafood-related gastroenteritis and is also an autochthonous member of marine and estuarine environments worldwide. One hundred seventy strains of V. parahaemolyticus were isolated from water and plankton samples collected along the Georgian coast of the Black Sea during 28 months of sample collection. All isolated strains were tested for presence of tlh, trh, and tdh. A subset of strains were serotyped and tested for additional factors and markers of pandemicity. Twenty-six serotypes, five of which are clinically relevant, were identified. Although all 170 isolates were negative for tdh, trh, and the Kanagawa Phenomenon, 7 possessed the GS-PCR sequence and 27 the 850 bp sequence of V. parahaemolyticus pandemic strains. The V. parahaemolyticus population in the Black Sea was estimated to be genomically heterogeneous by rep-PCR and the serodiversity observed did not correlate with rep-PCR genomic diversity. Statistical modeling was used to predict presence of V. parahaemolyticus as a function of water temperature, with strongest concordance observed for Green Cape site samples (Percent of total variance = 70, P < 0.001). Results demonstrate a diverse population of V. parahaemolyticus in the Black Sea, some of which carry pandemic markers, with increased water temperature correlated to an increase in abundance of V. parahaemolyticus
    corecore