55 research outputs found
Symmetry crossover and excitation thresholds at the neutral-ionic transition of the modified Hubbard model
Exact ground states, charge densities and excitation energies are found using
valence bond methods for N-site modified Hubbard models with uniform spacing.
At the neutral-ionic transition (NIT), the ground state has a symmetry
crossover in 4n, 4n+2 rings with periodic and antiperiodic boundary conditions,
respectively. The modified Hubbard model has a continuous NIT between a
diamagnetic band insulator on the paired side and a paramagnetic Mott insulator
on the covalent side. The singlet-triplet (ST), singlet-singlet (SS) and charge
gaps for finite N indicate that the ST and SS gaps close at the NIT with
increasing U and that the charge gap vanishes only there. Finite-N excitations
constrain all singularities to about 0.1t of the symmetry crossover. The NIT is
interpreted as a localized ground state (gs) with finite gaps on the paired
side and an extended gs with vanishing ST and SS gaps on the covalent side. The
charge gap and charge stiffness indicate a metallic gs at the transition that,
however, is unconditionally unstable to dimerization.Comment: 12 pages, including 8 figure
Density-matrix renormalization group studies of metal-halogen chains within a two-band extended Peierls-Hubbard model
The phase diagram of halogen-bridged mixed-valence metal complexes (MX) has been studied using a two-band extended Peierls-Hubbard model employing the recently developed density-matrix renormalization group method. We present the energies, charge- and spin-density distributions, bond orders, and charge-charge and spin-spin correlations, for the ground state, for different parameters of the model. The effects of bond alternation and site-diagonal distortion on the ground-state properties are considered in detail. We observe that the site-diagonal distortion plays a significant role in deciding the nature of the ground state of the system. We find that while the charge-density-wave (CDW) and bond-order-wave (BOW) phases can coexist, the CDW and SDW (spin-density-wave) phases are mutually exclusive in most cases. We have also studied the doped MX chains both with and without bond alternation and site-diagonal distortion in the CDW as well as SDW regimes. We find that the additional charges in the polarons and bipolarons for hole doping are confined to a few sites, in the presence of bond alternation and site-diagonal distortion. For electron doping, we find that the additional charge(s) is (are) smeared over the entire chain length, and although the energetics implies a disproportionation of the negatively charged bipolaron, the charge- and spin-density distributions do not reflect this. A positively charged bipolaron disproportionates into two polarons in the SDW region. There is also bond-order evidence for compression of the bond length for the positively charged polaronic and bipolaronic systems and an elongation of the bonds for systems with negatively charged polarons and bipolarons
Nonlinear optical properties of stilbene and azobenzene derivatives containing azaphosphane groups
We have studied the nonlinear optical (NLO) properties of some donor-acceptor molecules with stilbene and azobenzene molecules as backbone. We have used the nitro group as the acceptor and azaphosphane (R3P=N-) as the donor group. To study the effect of variation of NLO properties, we have replaced the substituents (Rs) connected to the phosphorus atom by methyl, amine and phenyl groups. We find that both first-order polarizability and hyperpolarizabilities are larger for stilbene derivatives and is maximum for the phenyl substitution. Second-order polarizability is higher for methyl substitution. We have also obtained the two-photon absorption cross-section for these molecules. We find that both one-photon and two-photon absorption cross-sections are maximum for the same excited state (first excited state in the case of stilbene and second excited state in the case of azobenzene derivatives)
Comment on "Origin of Giant Optical Nonlinearity in Charge-Transfer--Mott Insulators: A New Paradigm for Nonlinear Optics"
Comment on Phys. Rev. Lett. 86, 2086 (2001)Comment: 1 page, 1 eps figur
A Density Matrix Renormalization Group Method Study of Optical Properties of Porphines and Metalloporphines
The symmetrized Density-Matrix-Renormalization-Group (DMRG) method is used to
study linear and nonlinear optical properties of Free base porphine and
metallo-porphine. Long-range interacting model, namely, Pariser-Parr-Pople
(PPP) model is employed to capture the quantum many body effect in these
systems. The non-linear optical coefficients are computed within correction
vector method. The computed singlet and triplet low-lying excited state
energies and their charge densities are in excellent agreement with
experimental as well as many other theoretical results. The rearrangement of
the charge density at carbon and nitrogen sites, on excitation, is discussed.
From our bond order calculation, we conclude that porphine is well described by
the 18-annulenic structure in the ground state and the molecule expands upon
excitation. We have modelled the regular metalloporphine by taking an effective
electric field due to the metal ion and computed the excitation spectrum.
Metalloporphines have symmetry and hence have more degenerate excited
states. The ground state of Metalloporphines show 20-annulenic structure, as
the charge on the metal ion increases. The linear polarizability seems to
increase with the charge initially and then saturates. The same trend is
observed in third order polarizability coefficients.Comment: 13 pages, 6 figure
Transition from band insulator to Mott insulator in one dimension: Critical behavior and phase diagram
We report a systematic study of the transition from a band insulator (BI) to
a Mott insulator (MI) in a one-dimensional Hubbard model at half-filling with
an on-site Coulomb interaction U and an alternating periodic site potential V.
We employ both the zero-temperature density matrix renormalization group (DMRG)
method to determine the gap and critical behavior of the system and the
finite-temperature transfer matrix renormalization group method to evaluate the
thermodynamic properties. We find two critical points at U = and U =
that separate the BI and MI phases for a given V. A charge-neutral
spin-singlet exciton band develops in the BI phase (U<) and drops below
the band gap when U exceeds a special point Ue. The exciton gap closes at the
first critical point while the charge and spin gaps persist and coincide
between <U< where the system is dimerized. Both the charge and spin
gaps collapse at U = when the transition to the MI phase occurs. In the
MI phase (U>) the charge gap increases almost linearly with U while the
spin gap remains zero. These findings clarify earlier published results on the
same model, and offer insights into several important issues regarding an
appropriate scaling analysis of DMRG data and a full physical picture of the
delicate nature of the phase transitions driven by electron correlation. The
present work provides a comprehensive understanding for the critical behavior
and phase diagram for the transition from BI to MI in one-dimensional
correlated electron systems with a periodic alternating site potential.Comment: long version, 10 figure
- …