1 research outputs found

    PHYTOCHEMICAL ANALYSIS OF N-HEXANE LEAF EXTRACT OF ALPINIA PURPURATA (VIEILL.) K. SCHUM USING UV-VIS, FTIR AND GC-MS

    Get PDF
    Objective: The present study was carried out to characterize bioactive constituents present in n-hexane leaf extract of Alpinia purpurata (Vieill.) K. Schum.Methods: Phytochemical screening of the leaf extract of Alpinia purpurata revealed the presence of some bio-active components. The crude extracts were scanned in the wavelength ranging from 200-800 nm by using Ultraviolet-Visible (UV-Vis) spectrophotometers. Fourier transform infrared spectrophotometer (FTIR) was used to determine the functional groups in the plant. Gas chromatography-mass spectrometry (GC-MS) analysis was also performed to find major phytoconstituents present.Results: The phytochemical tests showed the presence of alkaloids, terpenoids, flavonoids, steroids, cardioglycosides, oils and fats, tannins and carbohydrates in n-hexane leaf extract of A. purpurata. In UV-Vis analysis there were sharp peaks from 200-700 nm. In FTIR analysis, the plant showed the presence of ester carbonyl and unsaturated carbonyl groups in 1708 and 1691 cmˉ¹ respectively. There were strong absorption bands at 2927 and 1452 cmˉ¹ due to CH and CH2 groups. The GC-MS analysis revealed the presence of different phytochemical compounds. This is the first time the presence of 4-Morpholinomethyl-7-methoxycoumarin 1.42%, Methanesulfonate of (3R,4S)-3-Propargyloxy-4-[(R)-1-hydroxy-3-phenyl-3-butenyl]-1-(p-methoxyphenyl)-2-azetidinone 2.28%, 5-Butyl-3-Methyl-1,2,3, 8a-Tetrahydroindolizine 6.48%, Phenol, 4-(3,7-dimethyl-3-ethenylocta-1,6-dienyl)-6.99%, 1-Naphthalenepropanol, à-ethenyldeca hydro-à,5,5,8a-tetramethyl-2-methylene-[1S-[1à (R*),4aá, 8aà]]-9.29%, Methenolone 10.93%, and Nonanamide, 5-hydroxy-5-methyl-2-(2-methylpropyl)-N-benzyl-25.80% were reported on the leaf extract of Alpinia purpurata.Conclusion: From the results, it is evident that A. purpurata has various phytoconstituents and functional groups. The intensive study of the resultant active constituents will lead to the discovery of a novel botanical-drug
    corecore