2 research outputs found

    Excessive Biologic Response to IFNβ Is Associated with Poor Treatment Response in Patients with Multiple Sclerosis

    Get PDF
    Interferon-beta (IFNβ) is used to inhibit disease activity in multiple sclerosis (MS), but its mechanisms of action are incompletely understood, individual treatment response varies, and biological markers predicting response to treatment have yet to be identified.he relationship between the molecular response to IFNβ and treatment response was determined in 85 patients using a longitudinal design in which treatment effect was categorized by brain magnetic resonance imaging as good (n = 70) or poor response (n = 15). Molecular response was quantified using a customized cDNA macroarray assay for 166 IFN-regulated genes (IRGs).The molecular response to IFNβ differed significantly between patients in the pattern and number of regulated genes. The molecular response was strikingly stable for individuals for as long as 24 months, however, suggesting an individual ‘IFN response fingerprint’. Unexpectedly, patients with poor response showed an exaggerated molecular response. IRG induction ratios demonstrated an exaggerated molecular response at both the first and 6-month IFNβ injections.MS patients exhibit individually unique but temporally stable biological responses to IFNβ. Poor treatment response is not explained by the duration of biological effects or the specific genes induced. Rather, individuals with poor treatment response have a generally exaggerated biological response to type 1 IFN injections. We hypothesize that the molecular response to type I IFN identifies a pathogenetically distinct subset of MS patients whose disease is driven in part by innate immunity. The findings suggest a strategy for biologically based, rational use of IFNβ for individual MS patients

    STAT-Phosphorylation–Independent Induction of Interferon Regulatory Factor-9 by Interferon-β

    No full text
    Type I interferon (IFN)-dependent STAT1 and STAT2 activation requires specific tyrosine residues (337Y and 512Y) located in the cytoplasmic domain of IFNAR-2c, the β-subunit of the human type I IFN receptor. To identify STAT activation-independent induction of ISGs, we used a mutant cell line in which both 337Y and 512Y were substituted with phenylalanine (337F512F or FF mutant). In these cells, type I IFN failed to activate STAT1, STAT2, and STAT3 did not induce well-characterized ISGs and did not exert antiviral or antiproliferative effects. Using Oligonucleotide array (Affymetrix™) analysis, we showed that interferon regulatory factor-9 (IRF-9) was the only gene induced by IFN-β in FF cells. Transient transfection analysis using an IRF-9 promoter–reporter luciferase construct in FF cells confirmed induction of the IRF-9 transcription unit by IFN-β. EMSA analysis using an IFN-stimulated response element (ISRE)-like sequence on the IRF-9 promoter detected 2 novel DNA-binding complexes induced in nuclear extracts of IFN-β-treated FF cells. Supershift experiments identified the proteins IRF-1 and C/EBP-β in the complex. These studies provide the first evidence that signaling pathways leading to gene transcription are activated by IFN-β independent of STAT phosphorylation
    corecore