3 research outputs found

    Structural Requirements for Activation of the 5-Oxo-6E,8Z, 11Z,14Z-eicosatetraenoic Acid (5-Oxo-ETE) Receptor: Identification of a Mead Acid Metabolite with Potent Agonist Activity

    No full text
    ABSTRACT The 5-lipoxygenase product 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE) is a potent chemoattractant for neutrophils and eosinophils, and its actions are mediated by the oxoeicosanoid (OXE) receptor, a member of the G proteincoupled receptor family. To define the requirements for activation of the OXE receptor, we have synthesized a series of 5-oxo-6E,8Z-dienoic acids with chain lengths between 12 and 20 carbons, as well as a series of 20-carbon 5-oxo fatty acids, either fully saturated or containing between one and five double bonds. The effects of these compounds on neutrophils (calcium mobilization, CD11b expression, and cell migration) and eosinophils (actin polymerization) were compared with those of 5-oxo-ETE. The C 12 and C 14 analogs were without appreciable activity, whereas the C 16 5-oxo-dienoic acid was a weak partial agonist. In contrast, the corresponding C 18 analog (5-oxo-18:2) was nearly as potent as 5-oxo-ETE. Among the C 20 analogs, the fully saturated compound had virtually no activity, whereas 5-oxo-6E-eicosenoic acid had only weak agonist activity. In contrast, 5-oxo-6E,8Z,11Z-eicosatrienoic acid (5-oxo-20:3) and its 8-trans isomer were approximately equipotent with 5-oxo-ETE in activating granulocytes. Because of the potent effects of 5-oxo-20:3, we investigated its formation from Mead acid (5Z,8Z,11Z-eicosatrienoic acid), which accumulates in dietary essential fatty acid deficiency, by neutrophils. The main Mead acid metabolite identified was 5-hydroxy-6,8,11-eicosatrienoic acid, followed by 5-oxo-20:3 and two 6-trans isomers of leukotriene B 3 . We conclude that optimal activation of the OXE receptor is achieved with 5-oxo-ETE, 5-oxo-18:2, and 5-oxo-20:3, and that the latter compound could potentially be formed under conditions of essential fatty acid deficiency. Metabolism of arachidonic acid by the 5-lipoxygenase (5-LO) pathway leads to the formation of leukotriene (LT) B 4 , LTC 4 , LTD 4 , and 5-HET

    Substrate Selectivity of 5-Hydroxyeicosanoid Dehydrogenase and Its Inhibition by 5-Hydroxy-Δ6-Long-Chain Fatty Acids

    No full text
    5-Oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE) is a metabolite of the 5-lipoxygenase (5-LO) product 5S-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-HETE), formed by the microsomal enzyme 5-hydroxyeicosanoid dehydrogenase (5-HEDH). 5-oxo-ETE is a chemoattractant for neutrophils and eosinophils, both in vitro and in vivo. To examine the substrate selectivity of 5-HEDH and to search for potential inhibitors, we prepared a series of 5S-hydroxy fatty acids (C12 to C20 containing zero to four double bonds) by total chemical synthesis and examined their metabolism by microsomes from monocytic U937 cells. Although most of these fatty acids were oxidized to their 5-oxo metabolites by 5-HEDH, 5-HETE seemed to be the best substrate. However, substrates containing less than 16 carbons, a methylated α-carboxyl group, or a hydroxyl group at the ω-end of the molecule were not substantially metabolized. Some of the fatty acids tested were fairly potent inhibitors of the formation of 5-oxo-ETE by 5-HEDH, in particular 5-hydroxy-6-octadecenoic acid and 5-hydroxy-6-eicosenoic acid. Both substances selectively inhibited 5-oxo-ETE formation by human peripheral blood mononuclear cells incubated with arachidonic acid and calcium ionophore without affecting the formation of leukotriene B4, 12-HETE, or 12-hydroxy-5,8,10-heptadecatrienoic acid. We conclude that the requirements for appreciable metabolism by 5-HEDH include a chain length of at least 16 carbons, a free α-carboxyl group, and a hydrophobic group at the ω-end of the molecule. 5-Hydroxy-Δ6 C18 and C20 fatty acids selectively inhibit 5-HEDH without inhibiting 5-LO, leukotriene A4 hydrolase, 12-lipoxygenase, or cyclooxygenase. Such compounds may be useful in defining the role of 5-oxo-ETE and its mechanism of synthesis

    Structural Requirements for Activation of the 5-Oxo-6 E

    No full text
    corecore