11 research outputs found
Anxiety and depression severity in neuropsychiatric SLE are associated with perfusion and functional connectivity changes of the frontolimbic neural circuit: a resting-state f(unctional) MRI study.
peer reviewed[en] OBJECTIVE: To examine the hypothesis that perfusion and functional connectivity disturbances in brain areas implicated in emotional processing are linked to emotion-related symptoms in neuropsychiatric SLE (NPSLE).
METHODS: Resting-state fMRI (rs-fMRI) was performed and anxiety and/or depression symptoms were assessed in 32 patients with NPSLE and 18 healthy controls (HC). Whole-brain time-shift analysis (TSA) maps, voxel-wise global connectivity (assessed through intrinsic connectivity contrast (ICC)) and within-network connectivity were estimated and submitted to one-sample t-tests. Subgroup differences (high vs low anxiety and high vs low depression symptoms) were assessed using independent-samples t-tests. In the total group, associations between anxiety (controlling for depression) or depression symptoms (controlling for anxiety) and regional TSA or ICC metrics were also assessed.
RESULTS: Elevated anxiety symptoms in patients with NPSLE were distinctly associated with relatively faster haemodynamic response (haemodynamic lead) in the right amygdala, relatively lower intrinsic connectivity of orbital dlPFC, and relatively lower bidirectional connectivity between dlPFC and vmPFC combined with relatively higher bidirectional connectivity between ACC and amygdala. Elevated depression symptoms in patients with NPSLE were distinctly associated with haemodynamic lead in vmPFC regions in both hemispheres (lateral and medial orbitofrontal cortex) combined with relatively lower intrinsic connectivity in the right medial orbitofrontal cortex. These measures failed to account for self-rated, milder depression symptoms in the HC group.
CONCLUSION: By using rs-fMRI, altered perfusion dynamics and functional connectivity was found in limbic and prefrontal brain regions in patients with NPSLE with severe anxiety and depression symptoms. Although these changes could not be directly attributed to NPSLE pathology, results offer new insights on the pathophysiological substrate of psychoemotional symptomatology in patients with lupus, which may assist its clinical diagnosis and treatment
Converging evidence of impaired brain function in systemic lupus erythematosus: changes in perfusion dynamics and intrinsic functional connectivity.
peer reviewed[en] PURPOSE: Ī¤he study examined changes in hemodynamics and functional connectivity in patients with systemic lupus erythematosus (SLE) with or without neuropsychiatric manifestations.
METHODS: Participants were 44 patients with neuropsychiatric SLE (NPSLE), 20 SLE patients without such manifestations (non-NPSLE), and 35 healthy controls. Resting-state functional MRI (rs-fMRI) was used to obtain whole-brain maps of (a) perfusion dynamics derived through time shift analysis (TSA), (b) regional functional connectivity (intrinsic connectivity contrast (ICC) coefficients), and (c) hemodynamic-connectivity coupling. Group differences were assessed through independent samples t-tests, and correlations of rs-fMRI indices with clinical variables and neuropsychological test scores were, also, computed.
RESULTS: Compared to HC, NPSLE patients demonstrated intrinsic hypoconnectivity of anterior Default Mode Network (DMN) and hyperconnectivity of posterior DMN components. These changes were paralleled by elevated hemodynamic lag. In NPSLE, cognitive performance was positively related to higher intrinsic connectivity in these regions, and to higher connectivity-hemodynamic coupling in posterior DMN components. Uncoupling between hemodynamics and connectivity in the posterior DMN was associated with worse task performance. Non-NPSLE patients displayed hyperconnectivity in posterior DMN and sensorimotor regions paralleled by relatively increased hemodynamic lag.
CONCLUSION: Adaptation of regional brain function to hemodynamic changes in NPSLE may involve locally decreased or locally increased intrinsic connectivity (which can be beneficial for cognitive function). This process may also involve elevated coupling of hemodynamics with functional connectivity (beneficial for cognitive performance) or uncoupling, which may be detrimental for the cognitive skills of NPSLE patients
Chronic Mild Traumatic Brain Injury: Aberrant Static and Dynamic Connectomic Features Identified Through Machine Learning Model Fusion.
peer reviewedTraumatic Brain Injury (TBI) is a frequently occurring condition and approximately 90% of TBI cases are classified as mild (mTBI). However, conventional MRI has limited diagnostic and prognostic value, thus warranting the utilization of additional imaging modalities and analysis procedures. The functional connectomic approach using resting-state functional MRI (rs-fMRI) has shown great potential and promising diagnostic capabilities across multiple clinical scenarios, including mTBI. Additionally, there is increasing recognition of a fundamental role of brain dynamics in healthy and pathological cognition. Here, we undertake an in-depth investigation of mTBI-related connectomic disturbances and their emotional and cognitive correlates. We leveraged machine learning and graph theory to combine static and dynamic functional connectivity (FC) with regional entropy values, achieving classification accuracy up to 75% (77, 74 and 76% precision, sensitivity and specificity, respectively). As compared to healthy controls, the mTBI group displayed hypoconnectivity in the temporal poles, which correlated positively with semantic (rā=ā0.43, pā<ā0.008) and phonemic verbal fluency (rā=ā0.46, pā<ā0.004), while hypoconnectivity in the right dorsal posterior cingulate correlated positively with depression symptom severity (rā=ā0.54, pā<ā0.0006). These results highlight the importance of residual FC in these regions for preserved cognitive and emotional function in mTBI. Conversely, hyperconnectivity was observed in the right precentral and supramarginal gyri, which correlated negatively with semantic verbal fluency (r=-0.47, pā<ā0.003), indicating a potential ineffective compensatory mechanism. These novel results are promising toward understanding the pathophysiology of mTBI and explaining some of its most lingering emotional and cognitive symptoms
Anxiety and depression severity in neuropsychiatric SLE are associated with perfusion and functional connectivity changes of the frontolimbic neural circuit: a resting-state f(unctional) MRI study
Objective To examine the hypothesis that perfusion and functional connectivity disturbances in brain areas implicated in emotional processing are linked to emotion-related symptoms in neuropsychiatric SLE (NPSLE).Methods Resting-state fMRI (rs-fMRI) was performed and anxiety and/or depression symptoms were assessed in 32 patients with NPSLE and 18 healthy controls (HC). Whole-brain time-shift analysis (TSA) maps, voxel-wise global connectivity (assessed through intrinsic connectivity contrast (ICC)) and within-network connectivity were estimated and submitted to one-sample t-tests. Subgroup differences (high vs low anxiety and high vs low depression symptoms) were assessed using independent-samples t-tests. In the total group, associations between anxiety (controlling for depression) or depression symptoms (controlling for anxiety) and regional TSA or ICC metrics were also assessed.Results Elevated anxiety symptoms in patients with NPSLE were distinctly associated with relatively faster haemodynamic response (haemodynamic lead) in the right amygdala, relatively lower intrinsic connectivity of orbital dlPFC, and relatively lower bidirectional connectivity between dlPFC and vmPFC combined with relatively higher bidirectional connectivity between ACC and amygdala. Elevated depression symptoms in patients with NPSLE were distinctly associated with haemodynamic lead in vmPFC regions in both hemispheres (lateral and medial orbitofrontal cortex) combined with relatively lower intrinsic connectivity in the right medial orbitofrontal cortex. These measures failed to account for self-rated, milder depression symptoms in the HC group.Conclusion By using rs-fMRI, altered perfusion dynamics and functional connectivity was found in limbic and prefrontal brain regions in patients with NPSLE with severe anxiety and depression symptoms. Although these changes could not be directly attributed to NPSLE pathology, results offer new insights on the pathophysiological substrate of psychoemotional symptomatology in patients with lupus, which may assist its clinical diagnosis and treatment
Distinct hemodynamic and functional connectivity features of fatigue in clinically isolated syndrome and multiple sclerosis: accounting for the confounding effect of concurrent depression symptoms.
peer reviewedPURPOSE: This study aims to identify common and distinct hemodynamic and functional connectivity (FC) features for self-rated fatigue and depression symptoms in patients with clinically isolated syndrome (CIS) and relapsing-remitting multiple sclerosis (RR-MS).
METHODS: Twenty-four CIS, 29 RR-MS patients, and 39 healthy volunteers were examined using resting-state fMRI (rs-fMRI) to obtain whole-brain maps of (i) hemodynamic response patterns (through time shift analysis), (ii) FC (via intrinsic connectivity contrast maps), and (iii) coupling between hemodynamic response patterns and FC. Each regional map was correlated with fatigue scores, controlling for depression, and with depression scores, controlling for fatigue.
RESULTS: In CIS patients, the severity of fatigue was associated with accelerated hemodynamic response in the insula, hyperconnectivity of the superior frontal gyrus, and evidence of reduced hemodynamics-FC coupling in the left amygdala. In contrast, depression severity was associated with accelerated hemodynamic response in the right limbic temporal pole, hypoconnectivity of the anterior cingulate gyrus, and increased hemodynamics-FC coupling in the left amygdala. In RR-MS patients, fatigue was associated with accelerated hemodynamic response in the insula and medial superior frontal cortex, increased functional role of the left amygdala, and hypoconnectivity of the dorsal orbitofrontal cortex, while depression symptom severity was linked to delayed hemodynamic response in the medial superior frontal gyrus; hypoconnectivity of the insula, ventromedial thalamus, dorsolateral prefrontal cortex, and posterior cingulate; and decreased hemodynamics-FC coupling of the medial orbitofrontal cortex.
CONCLUSION: There are distinct FC and hemodynamic responses, as well as different magnitude and topography of hemodynamic connectivity coupling, associated with fatigue and depression in early and later stages of MS
Anxiety and depression severity in neuropsychiatric SLE are associated with perfusion and functional connectivity changes of the frontolimbic neural circuit: a resting-state f(unctional) MRI study
Summarization: Objective To examine the hypothesis that perfusion and functional connectivity disturbances in brain areas implicated in emotional processing are linked to emotion-related symptoms in neuropsychiatric SLE (NPSLE).
Methods Resting-state fMRI (rs-fMRI) was performed and anxiety and/or depression symptoms were assessed in 32 patients with NPSLE and 18 healthy controls (HC). Whole-brain time-shift analysis (TSA) maps, voxel-wise global connectivity (assessed through intrinsic connectivity contrast (ICC)) and within-network connectivity were estimated and submitted to one-sample t-tests. Subgroup differences (high vs low anxiety and high vs low depression symptoms) were assessed using independent-samples t-tests. In the total group, associations between anxiety (controlling for depression) or depression symptoms (controlling for anxiety) and regional TSA or ICC metrics were also assessed.
Results Elevated anxiety symptoms in patients with NPSLE were distinctly associated with relatively faster haemodynamic response (haemodynamic lead) in the right amygdala, relatively lower intrinsic connectivity of orbital dlPFC, and relatively lower bidirectional connectivity between dlPFC and vmPFC combined with relatively higher bidirectional connectivity between ACC and amygdala. Elevated depression symptoms in patients with NPSLE were distinctly associated with haemodynamic lead in vmPFC regions in both hemispheres (lateral and medial orbitofrontal cortex) combined with relatively lower intrinsic connectivity in the right medial orbitofrontal cortex. These measures failed to account for self-rated, milder depression symptoms in the HC group.
Conclusion By using rs-fMRI, altered perfusion dynamics and functional connectivity was found in limbic and prefrontal brain regions in patients with NPSLE with severe anxiety and depression symptoms. Although these changes could not be directly attributed to NPSLE pathology, results offer new insights on the pathophysiological substrate of psychoemotional symptomatology in patients with lupus, which may assist its clinical diagnosis and treatment.Presented on: Lupus Science & Medicin
Recommended from our members
Chronic Mild Traumatic Brain Injury: Aberrant Static and Dynamic Connectomic Features Identified Through Machine Learning Model Fusion.
Traumatic Brain Injury (TBI) is a frequently occurring condition and approximately 90% of TBI cases are classified as mild (mTBI). However, conventional MRI has limited diagnostic and prognostic value, thus warranting the utilization of additional imaging modalities and analysis procedures. The functional connectomic approach using resting-state functional MRI (rs-fMRI) has shown great potential and promising diagnostic capabilities across multiple clinical scenarios, including mTBI. Additionally, there is increasing recognition of a fundamental role of brain dynamics in healthy and pathological cognition. Here, we undertake an in-depth investigation of mTBI-related connectomic disturbances and their emotional and cognitive correlates. We leveraged machine learning and graph theory to combine static and dynamic functional connectivity (FC) with regional entropy values, achieving classification accuracy up to 75% (77, 74 and 76% precision, sensitivity and specificity, respectively). As compared to healthy controls, the mTBI group displayed hypoconnectivity in the temporal poles, which correlated positively with semantic (rā=ā0.43, pā<ā0.008) and phonemic verbal fluency (rā=ā0.46, pā<ā0.004), while hypoconnectivity in the right dorsal posterior cingulate correlated positively with depression symptom severity (rā=ā0.54, pā<ā0.0006). These results highlight the importance of residual FC in these regions for preserved cognitive and emotional function in mTBI. Conversely, hyperconnectivity was observed in the right precentral and supramarginal gyri, which correlated negatively with semantic verbal fluency (r=-0.47, pā<ā0.003), indicating a potential ineffective compensatory mechanism. These novel results are promising toward understanding the pathophysiology of mTBI and explaining some of its most lingering emotional and cognitive symptoms.AI Luppi is funded by a Gates Cambridge Scholarship (OPP 1144). EA Stamatakis is funded by the Stephen Erskine Fellowship, Queensā College, Cambridge
Recommended from our members
Chronic Mild Traumatic Brain Injury: Aberrant Static and Dynamic Connectomic Features Identified Through Machine Learning Model Fusion.
Funder: Stephen Erskine FellowshipTraumatic Brain Injury (TBI) is a frequently occurring condition and approximately 90% of TBI cases are classified as mild (mTBI). However, conventional MRI has limited diagnostic and prognostic value, thus warranting the utilization of additional imaging modalities and analysis procedures. The functional connectomic approach using resting-state functional MRI (rs-fMRI) has shown great potential and promising diagnostic capabilities across multiple clinical scenarios, including mTBI. Additionally, there is increasing recognition of a fundamental role of brain dynamics in healthy and pathological cognition. Here, we undertake an in-depth investigation of mTBI-related connectomic disturbances and their emotional and cognitive correlates. We leveraged machine learning and graph theory to combine static and dynamic functional connectivity (FC) with regional entropy values, achieving classification accuracy up to 75% (77, 74 and 76% precision, sensitivity and specificity, respectively). As compared to healthy controls, the mTBI group displayed hypoconnectivity in the temporal poles, which correlated positively with semantic (rā=ā0.43, pā<ā0.008) and phonemic verbal fluency (rā=ā0.46, pā<ā0.004), while hypoconnectivity in the right dorsal posterior cingulate correlated positively with depression symptom severity (rā=ā0.54, pā<ā0.0006). These results highlight the importance of residual FC in these regions for preserved cognitive and emotional function in mTBI. Conversely, hyperconnectivity was observed in the right precentral and supramarginal gyri, which correlated negatively with semantic verbal fluency (r=-0.47, pā<ā0.003), indicating a potential ineffective compensatory mechanism. These novel results are promising toward understanding the pathophysiology of mTBI and explaining some of its most lingering emotional and cognitive symptoms.AI Luppi is funded by a Gates Cambridge Scholarship (OPP 1144). EA Stamatakis is funded by the Stephen Erskine Fellowship, Queensā College, Cambridge
Converging evidence of impaired brain function in systemic lupus erythematosus: changes in perfusion dynamics and intrinsic functional connectivity
Financial support for this work was provided by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the ā2nd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchersā (Project Number: 1220).Summarization: Purpose
Ī¤he study examined changes in hemodynamics and functional connectivity in patients with systemic lupus erythematosus (SLE) with or without neuropsychiatric manifestations.
Methods
Participants were 44 patients with neuropsychiatric SLE (NPSLE), 20 SLE patients without such manifestations (non-NPSLE), and 35 healthy controls. Resting-state functional MRI (rs-fMRI) was used to obtain whole-brain maps of (a) perfusion dynamics derived through time shift analysis (TSA), (b) regional functional connectivity (intrinsic connectivity contrast (ICC) coefficients), and (c) hemodynamic-connectivity coupling. Group differences were assessed through independent samples t-tests, and correlations of rs-fMRI indices with clinical variables and neuropsychological test scores were, also, computed.
Results
Compared to HC, NPSLE patients demonstrated intrinsic hypoconnectivity of anterior Default Mode Network (DMN) and hyperconnectivity of posterior DMN components. These changes were paralleled by elevated hemodynamic lag. In NPSLE, cognitive performance was positively related to higher intrinsic connectivity in these regions, and to higher connectivity-hemodynamic coupling in posterior DMN components. Uncoupling between hemodynamics and connectivity in the posterior DMN was associated with worse task performance. Non-NPSLE patients displayed hyperconnectivity in posterior DMN and sensorimotor regions paralleled by relatively increased hemodynamic lag.
Conclusion
Adaptation of regional brain function to hemodynamic changes in NPSLE may involve locally decreased or locally increased intrinsic connectivity (which can be beneficial for cognitive function). This process may also involve elevated coupling of hemodynamics with functional connectivity (beneficial for cognitive performance) or uncoupling, which may be detrimental for the cognitive skills of NPSLE patients.Presented on: Neuroradiolog
Improving the sensitivity of task-related Functional Magnetic Resonance Imaging data using generalized canonical correlation analysis
Summarization: General Linear Modeling (GLM) is the most commonly used method for signal detection in Functional Magnetic Resonance Imaging (fMRI) experiments, despite its main limitation of not taking into consideration common spatial dependencies between voxels. Multivariate analysis methods, such as Generalized Canonical Correlation Analysis (gCCA), have been increasingly employed in fMRI data analysis, due to their ability to overcome this limitation. This study, evaluates the improvement of sensitivity of the GLM, by applying gCCA to fMRI data after standard preprocessing steps. Data from a block-design fMRI experiment was used, where 25 healthy volunteers completed two action observation tasks at 1.5T. Whole brain analysis results indicated that the application of gCCA resulted in significantly higher intensity of activation in several regions in both tasks and helped reveal activation in the primary somatosensory and ventral premotor area, theoretically known to become engaged during action observation. In subject-level ROI analyses, gCCA improved the signal to noise ratio in the averaged timeseries in each preselected ROI, and resulted in increased extent of activation, although peak intensity was considerably higher in just two of them. In conclusion, gCCA is a promising method for improving the sensitivity of conventional statistical modeling in task related fMRI experiments.Presented on: Frontiers in Human Neuroscienc