20 research outputs found

    Hematological parameters in Ghanaian sickle cell disease patients

    No full text
    Charles Antwi-Boasiako,1 Ivy Ekem,2 Mubarak Abdul-Rahman,3 Frederika Sey,4 Alfred Doku,5 Bartholomew Dzudzor,6 Gifty B Dankwah,1 Kate Hagar Otu,7 John Ahenkorah,8 Robert Aryee1 1Department of Physiology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana; 2Department of Haematology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; 3Department of Pathology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana; 4Sickle Cell Clinic, Korle-Bu Teaching Hospital, Accra, Ghana; 5Department of Internal Medicine, School of Medicine and Dentistry, University of Ghana, Accra, Ghana; 6Department of Medical Biochemistry, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana; 7Department of Nursing and Midwifery, Greenhills School of Health Sciences, Accra, Ghana; 8Department of Anatomy, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana Background: Effective treatment and management of sickle cell disease (SCD) has been a challenge in Africa over the years. Hematological parameters are very useful profiles in the effective management of the disease. However, there is scarcity of studies on the hematological parameters of SCD in Ghana. This study aimed at determining hematological parameters among SCD patients with vaso-occlusion, those in the steady state as well as healthy controls at a teaching hospital in Ghana. Methodology: This was a cross-sectional study involving a total of 628 subjects, including 148 HbAA controls, 208 HbSS patients in steady state, 82 HbSC patients in steady state, 156 HbSS patients in vaso-occlusive crises (VOC), and 34 HbSC patients in VOC. Venous blood sample was collected from all study participants. A full blood count was done within 2 hours of collection, and hemoglobin (Hb) concentration, packed cell volume, red blood cell (RBC) concentration, mean corpuscular Hb, mean cell volume, mean corpuscular Hb concentration, and white blood cells (WBC) and platelet (PLT) counts were recorded. Results: WBC and PLT counts were significantly higher in both female and male patients with SCD, compared with their healthy counterparts (P<0.05). The level of WBC was, however, significantly higher in patients with HbSS VOC among the SCD patients (P<0.001). Levels of Hb, RBC, and hematocrit were significantly higher in the controls (P<0.001). There was no significant difference in mean cell Hb among male patients with SCD (P=0.274) and female patients with SCD (P=0.5410). Conclusion: The SCD patients had lower Hb and RBC than the controls; however, higher PLT and WBC are noted in various status of SCD, possibly reflecting spleen effect in these patients. Further studies are needed to confirm these findings. Keywords: sickle cell disease, hematological parameters, full blood count, anemia, Ghan

    Humanized Dsp ACM Mouse Model Displays Stress-Induced Cardiac Electrical and Structural Phenotypes

    No full text
    Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by fibro-fatty infiltration with an increased propensity for ventricular arrhythmias and sudden death. Genetic variants in desmosomal genes are associated with ACM. Incomplete penetrance is a common feature in ACM families, complicating the understanding of how external stressors contribute towards disease development. To analyze the dual role of genetics and external stressors on ACM progression, we developed one of the first mouse models of ACM that recapitulates a human variant by introducing the murine equivalent of the human R451G variant into endogenous desmoplakin (DspR451G/+). Mice homozygous for this variant displayed embryonic lethality. While DspR451G/+ mice were viable with reduced expression of DSP, no presentable arrhythmogenic or structural phenotypes were identified at baseline. However, increased afterload resulted in reduced cardiac performance, increased chamber dilation, and accelerated progression to heart failure. In addition, following catecholaminergic challenge, DspR451G/+ mice displayed frequent and prolonged arrhythmic events. Finally, aberrant localization of connexin-43 was noted in the DspR451G/+ mice at baseline, becoming more apparent following cardiac stress via pressure overload. In summary, cardiovascular stress is a key trigger for unmasking both electrical and structural phenotypes in one of the first humanized ACM mouse models

    Altered Expression of Zonula occludens-1 Affects Cardiac Na<sup>+</sup> Channels and Increases Susceptibility to Ventricular Arrhythmias

    No full text
    Zonula occludens-1 (ZO-1) is an intracellular scaffolding protein that orchestrates the anchoring of membrane proteins to the cytoskeleton in epithelial and specialized tissue including the heart. There is clear evidence to support the central role of intracellular auxiliary proteins in arrhythmogenesis and previous studies have found altered ZO-1 expression associated with atrioventricular conduction abnormalities. Here, using human cardiac tissues, we identified all three isoforms of ZO-1, canonical (Transcript Variant 1, TV1), CRA_e (Transcript Variant 4, TV4), and an additionally expressed (Transcript Variant 3, TV3) in non-failing myocardium. To investigate the role of ZO-1 on ventricular arrhythmogenesis, we generated a haploinsufficient ZO-1 mouse model (ZO-1+/−). ZO-1+/− mice exhibited dysregulated connexin-43 protein expression and localization at the intercalated disc. While ZO-1+/− mice did not display abnormal cardiac function at baseline, adrenergic challenge resulted in rhythm abnormalities, including premature ventricular contractions and bigeminy. At baseline, ventricular myocytes from the ZO-1+/− mice displayed prolonged action potential duration and spontaneous depolarizations, with ZO-1+/− cells displaying frequent unsolicited (non-paced) diastolic depolarizations leading to spontaneous activity with multiple early afterdepolarizations (EADs). Mechanistically, ZO-1 deficient myocytes displayed a reduction in sodium current density (INa) and an increased sensitivity to isoproterenol stimulation. Further, ZO-1 deficient myocytes displayed remodeling in ICa current, likely a compensatory change. Taken together, our data suggest that ZO-1 deficiency results in myocardial substrate susceptible to triggered arrhythmias
    corecore