31 research outputs found

    Galaxy pairs align with galactic filaments

    Full text link
    Context. Gravitational collapse theory and numerical simulations suggest that the velocity field within large-scale galaxy filaments is dominated by motions along the filaments. Aims. Our aim is to check whether observational data reveal any preferred orientation of galaxy pairs with respect to the underlying filaments as a result of the expectedly anisotropic velocity field. Methods. We use galaxy pairs and galaxy filaments identified from the Sloan Digital Sky Survey data. For filament extraction, we use the Bisous model that is based the marked point process technique. During the filament detection, we use the centre point of each pair instead of the positions of galaxies to avoid a built-in influence of pair orientation on the filament construction. For pairs lying within filaments (3012 cases), we calculate the angle between the line connecting galaxies of each pair and their host filament. To avoid redshift-space distortions, the angle is measured in the plain of the sky. Results. The alignment analysis shows that the orientation of galaxy pairs correlates strongly with their host filaments. The alignment signal is stronger for loose pairs, with at least 25% excess of aligned pairs compared to a random distribution. The alignment of galaxy pairs and filaments measured from the observational data is in good concordance with the alignment in the Millennium simulation and thus provides support to the {\Lambda}CDM formalism.Comment: 5 pages, 4 figures, accepted for publication in A&A Letter

    Dust-corrected surface photometry of M 31 from the Spitzer far infrared observations

    Full text link
    We create a model for recovering the intrinsic, absorption-corrected surface brightness distribution of a galaxy and apply the model to the M31. We construct a galactic model as a superposition of axially symmetric stellar components and a dust disc to analyse the intrinsic absorption efects. Dust column density is assumed to be proportional to the far-infrared flux of the galaxy. Along each line of sight, the observed far-infrared spectral energy distribution is approximated with modified black body functions considering dust components with different temperatures, allowing to determine the temperatures and relative column densities of the dust components. We apply the model to the nearby galaxy M31 using the Spitzer Space Telescope far-infrared observations for mapping dust distribution and temperature. A warm and a cold dust component are distinguished. The temperature of the warm dust in M31 varies between 56 and 60 K and is highest in the spiral arms; the temperature of the cold component is mostly 15-19 K and rises up to about 25 K at the centre of the galaxy. The intensity-weighted mean temperature of the dust decreases from T ~32 K at the centre to T ~20 K at R ~7 kpc and outwards. We also calculate the intrinsic UBVRIL surface brightness distributions and the spatial luminosity distribution. The intrinsic dust extinction in the V-colour rises from 0.25 mag at the centre to 0.4-0.5 mag at R = 6-13 kpc and decreases smoothly thereafter. The calculated total extinction-corrected luminosity of M31 is L_B = (3.64 pm 0.15) 10^10L_sun, corresponding to an absolute luminosity M_B = (-20.89 pm 0.04) mag. Of the total B-luminosity, 20% (0.24 mag) is obscured from us by the dust inside M31. The intrinsic shape of the bulge is slightly prolate in our best-fit model.Comment: 13 pages, 14 figures, accepted for publication in A&

    From voids to filaments: environmental transformations of galaxies in the SDSS

    Full text link
    We investigate the impact of filament and void environments on galaxies, looking for residual effects beyond the known relations with environment density. We quantified the host environment of galaxies as the distance to the spine of the nearest filament, and compared various galaxy properties within 12 bins of this distance. We considered galaxies up to 10 h−1h^{-1}Mpc from filaments, i.e. deep inside voids. The filaments were defined by a point process (the Bisous model) from the Sloan Digital Sky Survey data release 10. In order to remove the dependence of galaxy properties on the environment density and redshift, we applied weighting to normalise the corresponding distributions of galaxy populations in each bin. After the normalisation with respect to environment density and redshift, several residual dependencies of galaxy properties still remain. Most notable is the trend of morphology transformations, resulting in a higher elliptical-to-spiral ratio while moving from voids towards filament spines, bringing along a corresponding increase in the g−ig-i colour index and a decrease in star formation rate. After separating elliptical and spiral subsamples, some of the colour index and star formation rate evolution still remains. The mentioned trends are characteristic only for galaxies brighter than about Mr=−20M_{r} = -20 mag. Unlike some other recent studies, we do not witness an increase in the galaxy stellar mass while approaching filaments. The detected transformations can be explained by an increase in the galaxy-galaxy merger rate and/or the cut-off of extragalactic gas supplies (starvation) near and inside filaments. Unlike voids, large-scale galaxy filaments are not a mere density enhancement, but have their own specific impact on the constituent galaxies, reducing the star formation rate and raising the chances of elliptical morphology also at a fixed environment density level.Comment: 4 pages, 3 figures, Astronomy & Astrophysics letters accepte

    SDSS surface photometry of M 31 with absorption corrections

    Full text link
    The objective of this work is to obtain an extinction-corrected distribution of optical surface brightness and colour indices of the large nearby galaxy M 31 using homogeneous observational data and a model for intrinsic extinction. We process the Sloan Digital Sky Survey (SDSS) images in ugriz passbands and construct corresponding mosaic images, taking special care of subtracting the varying sky background. We apply the galactic model developed in Tempel et al. (2010) and far-infrared imaging to correct the photometry for intrinsic dust effects. We obtain observed and dust-corrected distributions of the surface brightness of M 31 and a map of line-of-sight extinctions inside the galaxy. Our extinction model suggests that either M 31 is intrinsically non-symmetric along the minor axis or the dust properties differ from those of the Milky Way. Assuming the latter case, we present the surface brightness distributions and integral photometry for the Sloan filters as well as the standard UBVRI system. We find the following intrinsic integral colour indices for M 31: (U-B)_0=0.35; (B-V)_0=0.86; (V-R)_0=0.63; (R-I)_0=0.53; the total intrinsic absorption-corrected luminosities of M 31 in the B and the V filters are 4.10 and 3.24 mag, respectively.Comment: 6 pages, 8 figures, accepted for publication in A&A. The high-resolution zoomable colour image of M 31 can be seen at http://www.aai.ee/~elmo/m31

    Spiral arms and disc stability in the Andromeda galaxy

    Full text link
    Aims: Density waves are often considered as the triggering mechanism of star formation in spiral galaxies. Our aim is to study relations between different star formation tracers (stellar UV and near-IR radiation and emission from HI, CO and cold dust) in the spiral arms of M31, to calculate stability conditions in the galaxy disc and to draw conclusions about possible star formation triggering mechanisms. Methods: We select fourteen spiral arm segments from the de-projected data maps and compare emission distributions along the cross sections of the segments in different datasets to each other, in order to detect spatial offsets between young stellar populations and the star forming medium. By using the disc stability condition as a function of perturbation wavelength and distance from the galaxy centre we calculate the effective disc stability parameters and the least stable wavelengths at different distances. For this we utilise a mass distribution model of M31 with four disc components (old and young stellar discs, cold and warm gaseous discs) embedded within the external potential of the bulge, the stellar halo and the dark matter halo. Each component is considered to have a realistic finite thickness. Results: No systematic offsets between the observed UV and CO/far-IR emission across the spiral segments are detected. The calculated effective stability parameter has a minimal value Q_{eff} ~ 1.8 at galactocentric distances 12 - 13 kpc. The least stable wavelengths are rather long, with the minimal values starting from ~ 3 kpc at distances R > 11 kpc. Conclusions: The classical density wave theory is not a realistic explanation for the spiral structure of M31. Instead, external causes should be considered, e.g. interactions with massive gas clouds or dwarf companions of M31.Comment: 12 pages, 8 figures, Astron & Astrophys accepte

    The role of stochastic and smooth processes in regulating galaxy quenching

    Full text link
    Galaxies can be classified as passive ellipticals or star-forming discs. Ellipticals dominate at the high end of the mass range, and therefore there must be a mechanism responsible for the quenching of star-forming galaxies. This could either be due to the secular processes linked to the mass and star formation of galaxies or to external processes linked to the surrounding environment. In this paper, we analytically model the processes that govern galaxy evolution and quantify their contribution. We have specifically studied the effects of mass quenching, gas stripping, and mergers on galaxy quenching. To achieve this, we first assumed a set of differential equations that describe the processes that shape galaxy evolution. We then modelled the parameters of these equations by maximising likelihood. These equations describe the evolution of galaxies individually, but the parameters of the equations are constrained by matching the extrapolated intermediate-redshift galaxies with the low-redshift galaxy population. In this study, we modelled the processes that change star formation and stellar mass in massive galaxies from the GAMA survey between z~0.4 and the present. We identified and quantified the contributions from mass quenching, gas stripping, and mergers to galaxy quenching. The quenching timescale is on average 1.2 Gyr and a closer look reveals support for the slow-then-rapid quenching scenario. The major merging rate of galaxies is about once per 10~Gyr, while the rate of ram pressure stripping is significantly higher. In galaxies with decreasing star formation, we show that star formation is lost to fast quenching mechanisms such as ram pressure stripping and is countered by mergers, at a rate of about 41% Gyr−1^{-1} and to mass quenching 49% Gyr−1^{-1}. (abridged)Comment: 12 pages, 10 figures, accepted to A&
    corecore