39 research outputs found

    Best bilinear shell element: flat, twisted or curved?

    Get PDF
    This thesis concerns the accuracy of finite element models for shell structures. The focus is on low-order approximations of layer and vibration modes in shell deformations with particular reference to problems with concentrated loads. It is shown that parametric error amplification, or numerical locking, arises in these cases when bilinear elements are used and the formulation is based on the so-called degenerated solid approach. Furthermore, an alternative way for designing bilinear shell elements is discussed. The procedure is based on a refined shallow shell model which allows for an effective coupling between the membrane and bending strain in the energy expression

    Dual Superconductors and SU(2) Yang-Mills

    Full text link
    We propose that the SU(2) Yang-Mills theory can be interpreted as a two-band dual superconductor with an interband Josephson coupling. We discuss various consequences of this interpretation including electric flux quantization, confinement of vortices with fractional flux, and the possibility that a closed vortex loop exhibits exotic exchange statistics

    Splitting The Gluon?

    Full text link
    In the strongly correlated environment of high-temperature cuprate superconductors, the spin and charge degrees of freedom of an electron seem to separate from each other. A similar phenomenon may be present in the strong coupling phase of Yang-Mills theories, where a separation between the color charge and the spin of a gluon could play a role in a mass gap formation. Here we study the phase structure of a decomposed SU(2) Yang-Mills theory in a mean field approximation, by inspecting quantum fluctuations in the condensate which is formed by the color charge component of the gluon field. Our results suggest that the decomposed theory has an involved phase structure. In particular, there appears to be a phase which is quite reminiscent of the superconducting phase in cuprates. We also find evidence that this phase is separated from the asymptotically free theory by an intermediate pseudogap phase.Comment: Improved discussion of magnetic nature of phases; removed unsubstantiated speculation about color confinemen

    Shafranov's virial theorem and magnetic plasma confinement

    Get PDF
    Shafranov's virial theorem implies that nontrivial magnetohydrodynamical equilibrium configurations must be supported by externally supplied currents. Here we extend the virial theorem to field theory, where it relates to Derrick's scaling argument on soliton stability. We then employ virial arguments to investigate a realistic field theory model of a two-component plasma, and conclude that stable localized solitons can exist in the bulk of a finite density plasma. These solitons entail a nontrivial electric field which implies that purely magnetohydrodynamical arguments are insufficient for describing stable, nontrivial structures within the bulk of a plasma.Comment: 9 pages no figure

    Hidden symmetry and knot solitons in a charged two-condensate Bose system

    Full text link
    We show that a charged two-condensate Ginzburg-Landau model or equivalently a Gross-Pitaevskii functional for two charged Bose condensates, can be mapped onto a version of the nonlinear O(3) σ\sigma-model. This implies in particular that such a system possesses a hidden O(3) symmetry and allows for the formation of stable knotted solitons. The results, in particular, should be relevant to the superconducting MgB_2.Comment: This version will appear in Phys. Rev. B, added a comment on the case when condensates in two bands do not independently conserve, also added a figure and references to experimental papers on MgB_2 (for which our study is relevant). Miscellaneous links on knot solitons are also available at the homepage of one of the authors http://www.teorfys.uu.se/PEOPLE/egor/ . Animations of knot solitons are available at http://users.utu.fi/h/hietarin/knots/c45_p2.mp
    corecore