161 research outputs found

    Millimeter and Submillimeter Observations from the South Pole

    Full text link
    During the past decade, a year-round observatory has been established at the geographic South Pole by the Center for Astrophysical Research in Antarctica (CARA). CARA has fielded several millimeter- and submillimeter-wave instruments: AST/RO (the Antarctic Submillimeter Telescope and Remote Observatory, a 1.7-m telescope outfitted with a variety of receivers at frequencies from 230 GHz to 810 GHz, including PoleSTAR, a heterodyne spectrometer array), Python (a degree-scale CMB telescope), Viper (a 2-m telescope which has been outfitted with SPARO, a submillimeter-wave bolometric array polarimeter, ACBAR, a multi-channel CMB instrument, and Dos Equis, a HEMT polarimeter), and DASI (the Degree-Angular Scale Interferometer). These instruments have obtained significant results in studies of the interstellar medium and observational cosmology, including detections of the 1 degree acoustic peak in the CMB and the Sunyaev-Zel'dovich effect. The South Pole environment is unique among observatory sites for unusually low wind speeds, low absolute humidity, and the consistent clarity of the submillimeter sky. The atmosphere is dessicated by cold: at the South Pole's average annual temperature of -49 C, the partial pressure of saturated water vapor is only 1.2% of what it is at 0 C. The low water vapor levels result in exceptionally low values of sky noise. This is crucial for large-scale observations of faint cosmological sources---for such observations the South Pole is unsurpassed.Comment: 9 pages, contribution to 2K1BC symposium "Experimental Cosmology at Millimeter Wavelengths", ed. M. De Petris and M. Gervas

    Design Considerations for Large Detector Arrays on Submillimeter-wave Telescopes

    Get PDF
    The emerging technology of large (~ 10,000 pixel) submillimeter-wave bolometer arrays presents a novel optical design problem---how can such arrays be fed by diffraction-limited telescope optics where the primary mirror is less than 100,000 wavelengths in diameter? Standard Cassegrain designs for radiotelescope optics exhibit focal surface curvature so large that detectors cannot be placed more than 25 beam diameters from the central ray. The problem is worse for Ritchey-Cretien designs, because these minimize coma while increasing field curvature. Classical aberrations, including coma, are usually dominated by diffraction in submillimeter-wave single dish telescopes. The telescope designer must consider (1) diffraction, (2) aberration, (3) curvature of field, (4) cross-polarization, (5) internal reflections, (6) the effect of blockages, (7) means of beam chopping on- and off-source, (8) gravitational and thermal deformations of the primary mirror, (9) the physical mounting of large detector packages, and (10) the effect of gravity and (11) vibration on those detectors. Simultaneous optimization of these considerations in the case of large detector arrays leads to telescopes that differ considerably from standard radiotelescope designs. Offset optics provide flexibility for mounting detectors, while eliminating blockage and internal reflections. Aberrations and cross-polarization can be the same as on-axis designs having the same diameter and focal length. Trade-offs include the complication of primary mirror homology and an increase in overall cost. A dramatic increase in usable field of view can be achieved using shaped optics. Solutions having one to six mirrors will be discussed, including a possible six-mirror design for the proposed South Pole 10m telescope.Comment: in proceedings "Radio Telescopes" SPIE Astronomical Telescopes and Instrumentation, 30 March 2000, Munich. SPIE code 4015-46. 12 pages 4 figures Revised to fix typos, figur

    The Scaleheight of Giant Molecular Clouds is Less than that of Smaller Clouds

    Full text link
    We have used an antenna temperature thresholding algorithm on the Bell Laboratories 13CO Milky Way Survey to create a catalog of 1,400 molecular clouds. Of these, 281 clouds were selected for having well-determined kinematic distances. The scaleheight, luminosity, internal velocity dispersion, and size of the cloud sample are analyzed to show that clouds smaller than ~200,000 solar masses have a scaleheight which is about 35 pc, roughly independent of cloud mass, while larger clouds, the Giant Molecular Clouds, have a reduced scaleheight which declines with increasing cloud mass.Comment: 12 pages including 4 color figures and 1 table. Submitted to ApJ

    Physical State of Molecular Gas in High Galactic Latitude Translucent Clouds

    Get PDF
    The rotational transitions of carbon monoxide (CO) are the primary means of investigating the density and velocity structure of the molecular interstellar medium. Here we study the lowest four rotational transitions of CO towards high-latitude translucent molecular clouds (HLCs). We report new observations of the J = (4-3), (2-1), and (1-0) transitions of CO towards eight high-latitude clouds. The new observations are combined with data from the literature to show that the emission from all observed CO transitions is linearly correlated. This implies that the excitation conditions which lead to emission in these transitions are uniform throughout the clouds. Observed 13CO/12CO (1-0) integrated intensity ratios are generally much greater than the expected abundance ratio of the two species, indicating that the regions which emit 12CO (1-0) radiation are optically thick. We develop a statistical method to compare the observed line ratios with models of CO excitation and radiative transfer. This enables us to determine the most likely portion of the physical parameter space which is compatible with the observations. The model enables us to rule out CO gas temperatures greater than 30K since the most likely high-temperature configurations are 1 pc-sized structures aligned along the line of sight. The most probable solution is a high density and low temperature (HDLT) solution. The CO cell size is approximately 0.01 pc (2000 AU). These cells are thus tiny fragments within the 100 times larger CO-emitting extent of a typical high-latitude cloud. We discuss the physical implications of HDLT cells, and we suggest ways to test for their existence.Comment: 19 pages, 13 figures, 2 tables, emulateapj To be published in The Astrophysical Journa

    Giant Molecular Clouds are More Concentrated to Spiral Arms than Smaller Clouds

    Full text link
    From our catalog of Milky Way molecular clouds, created using a temperature thresholding algorithm on the Bell Laboratories 13CO Survey, we have extracted two subsets:(1) Giant Molecular Clouds (GMCs), clouds that are definitely larger than 10^5 solar masses, even if they are at their `near distance', and (2) clouds that are definitely smaller than 10^5 solar masses, even if they are at their `far distance'. The positions and velocities of these clouds are compared to the loci of spiral arms in (l, v) space. The velocity separation of each cloud from the nearest spiral arm is introduced as a `concentration statistic'. Almost all of the GMCs are found near spiral arms. The density of smaller clouds is enhanced near spiral arms, but some clouds (~10%) are unassociated with any spiral arm. The median velocity separation between a GMC and the nearest spiral arm is 3.4+-0.6 km/s, whereas the median separation between smaller clouds and the nearest spiral arm is 5.5+-0.2 km/s.Comment: 11 pages, 3 figure
    • …
    corecore