8 research outputs found
Radiation induced force between two planar waveguides
We study the electromagnetic force exerted on a pair of parallel slab
waveguides by the light propagating through them. We have calculated the
dependence of the force on the slab separation by means of the Maxwell--Stress
tensor formalism and we have discussed its main features for the different
propagation modes: spatially symmetric (antisymmetric) modes give rise to an
attractive (repulsive) interaction. We have derived the asymptotic behaviors of
the force at small and large separation and we have quantitatively estimated
the mechanical deflection induced on a realistic air-bridge structure.Comment: 10 pages, 6 figure
Optical binding of particles with or without the presence of a flat dielectric surface
Optical fields can induce forces between microscopic objects, thus giving
rise to new structures of matter. We study theoretically these optical forces
between two spheres, either isolated in water, or in presence of a flat
dielectric surface. We observe different behavior in the binding force between
particles at large and at small distances (in comparison with the wavelength)
from each other. This is due to the great contribution of evanescent waves at
short distances. We analyze how the optical binding depends of the size of the
particles, the material composing them, the wavelength and, above all, on the
polarization of the incident beam. We also show that depending on the
polarization, the force between small particles at small distances changes its
sign. Finally, the presence of a substrate surface is analyzed showing that it
only slightly changes the magnitudes of the forces, but not their qualitative
nature, except when one employs total internal reflection, case in which the
particles are induced to move together along the surface.Comment: 8 pages, 9 figures, and 1 tabl
Mie resonances and bonding in photonic crystals
Isolated dielectric spheres support resonant electromagnetic modes which are
analogous to electronic orbitals and, like their electronic counterparts, can
form bonding or anti-bonding interactions between neighbouring spheres. By
irradiating the system with light at the bonding frequency an attractive
interaction is induced between the spheres. We suggest that by judicious
selection of bonding states we can drive a system towards a desired structure,
rather than rely on the structure dictated by gravitational or Van der Waals
forces, the latter deriving from the zero point energy population of a state.Comment: Minor changes in text, of explanatory nature. 6 pages, Latex, 6
figures, accepted by Europhysics Letter
Resonance-Induced Effects in Photonic Crystals
For the case of a simple face-centered-cubic photonic crystal of homogeneous
dielectric spheres, we examine to what extent single-sphere Mie resonance
frequencies are related to band gaps and whether the width of a gap can be
enlarged due to nearby resonances. Contrary to some suggestions, no spectacular
effects may be expected. When the dielectric constant of the spheres
is greater than the dielectric constant of the
background medium, then for any filling fraction there exists a critical
above which the lowest lying Mie resonance frequency falls inside
the lowest stop gap in the (111) crystal direction, close to its midgap
frequency. If , the correspondence between Mie
resonances and both the (111) stop gap and a full gap does not follow such a
regular pattern. If the Mie resonance frequency is close to a gap edge, one can
observe a resonance-induced widening of a relative gap width by .Comment: 14 pages, 3 figs., RevTex. For more info look at
http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm