54 research outputs found

    A diet rich in unsaturated fatty acids prevents progression toward heart failure in a rabbit model of pressure and volume overload

    Get PDF
    Background-During heart failure (HF), cardiac metabolic substrate preference changes from fatty acid (FA) toward glucose oxidation. This change may cause progression toward heart failure. We hypothesize that a diet rich in FAs may prevent this process, and that dietary 3-FAs have an added antiarrhythmic effect based on action potential (AP) shortening in animals with HF. Methods and Results-Rabbits were fed a diet containing 1.25% (w/w) high oleic sunflower oil (HF-9, N 11), 1.25% fish oil (HF-3, N11), or no supplement (HF-control, N8). Subsequently, HF was induced by volume and pressure overload. After 4 months, HF-parameters were assessed, electrocardiograms were recorded, and blood and ventricular tissue were collected. Myocytes were isolated for patch clamp or intracellular Ca2-recordings to study electrophysiologic remodeling and arrhythmogenesis. Both the HF-9 and the HF-3 groups had larger myocardial FA oxidation capacity than HF control. The HF-3 group had significantly lower mean ( SEM) relative heart and lung weight (3.3-0.13 and 3.2-0.12 g kg 1, respectively) than HF control (4.8-0.30 and 4.5-0.23), and shorter QTc intervals (167-2.6 versus 182-6.4). The HF-9 also displayed a significantly reduced relative heart weight (3.6-0.26), but had similar QTc (179-4.3) compared with HF control. AP duration in the HF-3 group was 20% shorter due to increased Ito1 and IK1 and triggered activity, and Ca2-aftertransients were less than in the HF-9 group. Conclusions-Dietary unsaturated FAs started prior to induction of HF prevent hypertrophy and HF. In addition, fish oil FAs prevent HF-induced electrophysiologic remodeling and arrhythmias. © 2012 American Heart Association, Inc

    RBM20 Mutations Induce an Arrhythmogenic Dilated Cardiomyopathy Related to Disturbed Calcium Handling

    Get PDF
    BACKGROUND: Mutations in RBM20 (RNA-binding motif protein 20) cause a clinically aggressive form of dilated cardiomyopathy, with an increased risk of malignant ventricular arrhythmias. RBM20 is a splicing factor that targets multiple pivotal cardiac genes, such as Titin (TTN) and CAMK2D (calcium/calmodulin-dependent kinase II delta). Aberrant TTN splicing is thought to be the main determinant of RBM20-induced dilated cardiomyopathy, but is not likely to explain the increased risk of arrhythmias. Here, we investigated the extent to which RBM20 mutation carriers have an increased risk of arrhythmias and explore the underlying molecular mechanism

    Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling

    Get PDF
    Distinct stressors may induce heart failure. As compensation, β-adrenergic stimulation enhances myocardial contractility by elevating cardiomyocyte intracellular Ca2+ ([Ca2+]i). However, chronic β-adrenergic stimulation promotes adverse cardiac remodelling. Cardiac expression of nuclear receptor Nur77 is enhanced by β-adrenergic stimulation, but its role in cardiac remodelling is still unclear. We show high and rapid Nur77 upregulation in cardiomyocytes stimulated with β-adrenergic agonist isoproterenol. Nur77 knockdown in culture resulted in hypertrophic cardiomyocytes. Ventricular cardiomyocytes from Nur77-deficient (Nur77-KO) mice exhibited elevated diastolic and systolic [Ca2+]i and prolonged action potentials compared to wild type (WT). In vivo, these differences resulted in larger cardiomyocytes, increased expression of hypertrophic genes

    Chronically elevated branched chain amino acid levels are pro-arrhythmic

    Get PDF
    Aims. Cardiac arrhythmias comprise a major health and economic burden and are associated with significant morbidity and mortality, including cardiac failure, stroke, and sudden cardiac death (SCD). Development of efficient preventive and therapeutic strategies is hampered by incomplete knowledge of disease mechanisms and pathways. Our aim is to identify novel mechanisms underlying cardiac arrhythmia and SCD using an unbiased approach. Methods and results. We employed a phenotype-driven N-ethyl-N-nitrosourea mutagenesis screen and identified a mouse line with a high incidence of sudden death at young age (6–9 weeks) in the absence of prior symptoms. Affected mice were found to be homozygous for the nonsense mutation Bcat2p.Q300*/p.Q300* in the Bcat2 gene encoding branched chain amino acid transaminase 2. At the age of 4–5 weeks, Bcat2p.Q300*/p.Q300* mice displayed drastic increase of plasma levels of branch chain amino acids (BCAAs—leucine, isoleucine, valine) due to the incomplete catabolism of BCAAs, in addition to inducible arrhythmias ex vivo as well as cardiac conduction and repolarization disturbances. In line with these findings, plasma BCAA levels were positively correlated to electrocardiogram indices of conduction and repolarization in the German community-based KORA F4 Study. Isolated cardiomyocytes from Bcat2p.Q300*/p.Q300* mice revealed action potential (AP) prolongation, pro-arrhythmic events (early and late afterdepolarizations, triggered APs), and dysregulated calcium homeostasis. Incubation of human pluripotent stem cell-derived cardiomyocytes with elevated concentration of BCAAs induced similar calcium dysregulation and pro-arrhythmic events which were prevented by rapamycin, demonstrating the crucial involvement of mTOR pathway activation. Conclusions. Our findings identify for the first time a causative link between elevated BCAAs and arrhythmia, which has implications for arrhythmogenesis in conditions associated with BCAA metabolism dysregulation such as diabetes, metabolic syndrome, and heart failure

    Sodium ion transporters as new therapeutic targets in heart failure

    No full text
    Sodium ion transporters in sarcolemma are involved in numerous vital cell functions, such as excitability, excitation-contraction coupling, energy metabolism, pH and volume regulation, development and growth. In a number of cardiac pathologies, the intracellular sodium concentration ([Na+]i) is elevated. Since [Na+]i and intracellular Ca2+ concentration ([Ca2+]i are coupled through the Na+/Ca(2+)-exchanger, these cardiac pathologies display disturbed calcium handling. For instance, [Na+]i is increased in heart failure (HF) leading to Na+/Ca(2+)-exchanger mediated increase in [Ca2+]i, reduced contractility and increased propensity to arrhythmias. Several studies support the contention that an increase in [Na+]i and [Ca2+]i transduces a signal the nucleus, that triggers development of cardiac remodelling and hypertrophy. Pharmacological intervention, which favourably interferes with [Na+]i and [Ca2+]i homeostasis, might prevent hypertrophy, cardiac remodelling, arrhythmias and HF. The most important sodium transport mechanisms that may underlie increased [Na+]i are: Na+/H(+)-exchanger (NHE-1), Na+-HCO(3)(-) co-transporter (NBC), Na(+)-K(+)-Cl(-) co-transporter (NKCC), Na(+)-channel, Na+/K(+)-ATPase and Na+/Ca(2+)-exchanger (NCX). Preclinical studies showed that pharmacological interventions, targeted against sarcolemmal sodium ion transporters, proved effective in ameliorating heart failure. In this respect: 1) NHE-1 inhibition reduces cardiac remodelling, hypertrophy and HF, although, in the patients following coronary artery bypass graft surgery, it was associated with an increase of stroke. 2) The activity of NBC is up-regulated, during the development of hypertrophy and may be a therapeutic strategy to prevent the development of hypertrophy and HF. 3) NKCC is increased in post-infarction HF, and the inhibition of NKCC attenuated post-infarction remodelling. 4) Inactivation of sodium channels is impaired in HF, which may result, in increased Na+ influx and prolongation of the action potential. 5) Blockade of NCX may be useful as a part of a combined therapeutic approach. Inhibition of reversed mode, or activation of forward mode NCX reduce Ca2+ overload. 6) Inhibition of Na+/K(+)-ATPase (digoxin), is used to increase contractility, however, it enhances progression of HF. Oppositely, new drugs which increase activity of Na+/K(+)-ATPase may prevent the development of cardiac remodelling hypertrophy and H

    Etiology-dependency of ionic remodeling in cardiomyopathic rabbits

    No full text
    BACKGROUND: Both dilated (DCM) and ischemic cardiomyopathy (ICM) are associated with action potential (AP) prolongation due to ionic remodeling. In humans, AP prolongation is more pronounced in myocytes isolated from explanted DCM than ICM hearts. However, there is a large variability due to confounding factors, including age, sex, concomitant disease, drug treatment, and progression of the disease at the time of heart transplantation. Here, we investigated the etiology-dependency of ionic remodeling in standardized rabbit models of ICM and DCM. METHODS: ICM and DCM were induced by chronic infarction or combined volume and pressure overload, respectively. APs and membrane currents were measured using patch-clamp methodology. RESULTS: Both ICM and DCM caused hypertrophy, but this hypertrophy was more prominent in DCM rabbits that also developed heart failure (DCM(F)), as revealed by the presence of ascites. Animals of either model showed AP prolongation. While the AP prolongation was similar by the same degree of hypertrophy, AP prolongation in DCM(F) was more pronounced. In all models, L-type Ca(2+) current, inward rectifier K(+) current, and rapid delayed rectifier K(+) current were unaltered, but the transient outward K(+) current (I(to1)) density was significantly reduced. The I(to1) decrease was not associated with differences in voltage-dependency of (in)activation. I(to1) downregulation was similar in ICM and DCM with the same degree of hypertrophy, but was more pronounced in DCM(F). CONCLUSIONS: The amount of ionic remodeling and AP prolongation in cardiomyopathic rabbits is due to differences in the amount of hypertrophy rather than differences in the etiology of the cardiomyopath

    Contribution of NHE-1 to cell length shortening of normal and failing rabbit cardiac myocytes

    No full text
    At the same intracellular pH (pHi) Na+/H+ exchange (NHE-1) fluxes of ventricular myocytes of hypertrophied failing hearts (HFH) are increased. We assessed how NHE-1 affected cell length shortening. pHi was measured fluorimetrically in resting and twitching (1-3 Hz) normal and HFH rabbit myocytes. In HEPES-buffered solutions, increased NHE-1 fluxes (P=0.001, n=14) made HFH resting pHi 0.2+/-0.03 units more alkaline than control (n=27). In CO2/HCO3--buffered solutions, HFH resting pHi was not different (7.05+/-0.02, n=30). Twitching myocytes of both groups shortened 15-16% less per 0.1 pH unit acidification. In HEPES-buffered solutions, cariporide depressed cell length shortening of normal myocytes (1-3 Hz) by 16+/-5.4% (n=9, P=0.005). In HFH myocytes cariporide restored the positive force-frequency relationship (n=7, P=0.009), by depressing twitch amplitudes at 1 Hz (16+/-11%, P=0.047) but not at 2 and 3 Hz. The depressions were all caused by pHi acidification. In CO2/HCO3- buffered solutions the cariporide-induced acidification was too small to explain the cell length shortening depression of normal (19+/-5.0%, n=11, P=0.006) and HFH myocytes (14+/-4.7%, n=11, P=0.001). When compared to HEPES-buffered solutions, HFH myocytes in CO2/HCO3--buffered solutions shortened 12+/-6.8% better than expected given the 0.16+/-0.02 units more acidic pHi's at which they twitched. We conclude that in CO2/HCO3--buffered solutions NHE-1 improved cell length shortening of unstretched normal and HFH myocytes via a pHi-independent mechanism. Although NHE-1 was increased in HFH myocytes, the magnitude of the pHi-independent effect of NHE-1 inhibition on cell length shortening was similar in both group
    • …
    corecore