47 research outputs found

    Micro ring resonators in silicon-on-insulator

    Get PDF
    Silicon as a platform for photonics has recently seen a very large increase in interest because of its potential to overcome the bandwidth limitations of microprocessor interconnects and the low manufacturing cost given by the high compatibility with the already established micro-electronics industry. There has therefore been a signicant push in silicon photonics research to develop all silicon based optical components for telecoms applications. The work reported in this Thesis is con- cerned with the design, fabrication and characterisation of coupled ring resonators on silicon-on-insulator (SOI) material. The nal objective of this work is to pro- vide a robust and reliable technology for the demonstration of optical buers and delay-lines operating at signal bandwidths up to 100 GHz and in the wavelength region around 1550 nm. The core of the activity focused on the optimisation of the fabrication technology and device geometry to ensure the required device performance for the fabrication of long chains of ring resonators. The nal pro- cess has been optimised to obtain both intra-chip and chip-to-chip reproducibility with a variability of the process controlled at the nanometre scale. This was made possible by careful control of all the variables involved in the fabrication process, reduction of the fabrication complexity, close feature-size repeatability, line-edge roughness reduction, nearly vertical sidewall proles and high uniformity in the ebeam patterning. The best optical propagation losses of the realized waveguides reduced down to 1 dB=cm for 480 220 nm2 rectangular cross-section photonic wires and were consistently kept at typical values of around 1.5 dB=cm. Control of the coupling coecients between resonators had a standard deviation of less than 4 % for dierent realizations and resonance dispersion between resonators was below 50 GHz. All these gures represent the state-of-the-art in SOI photon- ics technology. Considerable eort has also been devoted to the development of ecient thermal electrodes (52 W=GHz) to obtain a recongurable behaviour of the structure and polymer inverse tapers to improve the o-chip coupling (inser- tion losses < 2 dB). Phase-preserving and error-free transmission up to 100 Gbit=s with continuously tunable optical delay up to 200 ps has been demonstrated on the nal integrated systems, proving the compatibility of these devices with advanced modulation formats and high bit-rate transmission systems

    Mid-Infrared Plasmonic Platform based on Heavily Doped Epitaxial Ge-on-Si: Retrieving the Optical Constants of Thin Ge Epilayers

    Full text link
    The n-type Ge-on-Si epitaxial material platform enables a novel paradigm for plasmonics in the mid-infrared, prompting the future development of lab-on-a-chip and subwavelength vibrational spectroscopic sensors. In order to exploit this material, through proper electrodynamic design, it is mandatory to retrieve the dielectric constants of the thin Ge epilayers with high precision due to the difference from bulk Ge crystals. Here we discuss the procedure we have employed to extract the real and imaginary part of the dielectric constants from normal incidence reflectance measurements, by combining the standard multilayer fitting procedure based on the Drude model with Kramers-Kronig transformations of absolute reflectance data in the zero-transmission range of the thin film.Comment: Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2014 39th International Conference o

    Factors Affecting the Quality of Bacterial Genomes Assemblies by Canu after Nanopore Sequencing

    Get PDF
    Long-read sequencing (LRS), like Oxford Nanopore Technologies, is usually associated with higher error rates compared to previous generations. Factors affecting the assembly quality are the integrity of DNA, the flowcell efficiency, and, not least all, the raw data processing. Among LRS-intended de novo assemblers, Canu is highly flexible, with its dozens of adjustable parameters. Different Canu parameters were compared for assembling reads of Salmonellaenterica ser. Bovismorbificans (genome size of 4.8 Mbp) from three runs on MinION (N50 651, 805, and 5573). Two of them, with low quality and highly fragmented DNA, were not usable alone for assembly, while they were successfully assembled when combining the reads from all experiments. The best results were obtained by modifying Canu parameters related to the error correction, such as corErrorRate (exclusion of overlaps above a set error rate, set up at 0.40), corMhapSensitivity (the coarse sensitivity level, set to “high”), corMinCoverage (set to 0 to correct all reads, regardless the overlaps length), and corOutCoverage (corrects the longest reads up to the imposed coverage, set to 100). This setting produced two contigs corresponding to the complete sequences of the chromosome and a plasmid. The overall results highlight the importance of a tailored bioinformatic analysis

    Optical activation of germanium plasmonic antennas in the mid-infrared

    Get PDF
    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas

    1H-NMR metabolomic profile of healthy and osteoarthritic canine synovial fluid before and after UC-II supplementation

    Get PDF
    The aim of the study was to compare the metabolomic synovial fluid (SF) profile of dogs affected by spontaneous osteoarthritis (OA) and supplemented with undenatured type II collagen (UC-II), with that of healthy control dogs. Client-owned dogs were enrolled in the study and randomized in two different groups, based on the presence/absence of OA (OA group and OA-free group). All dogs were clinically evaluated and underwent SF sampling for 1H-Nuclear Magnetic Resonance spectroscopy (1H-NMR) analysis at time of presentation. All dogs included in OA group were supplemented with UC-II orally administered for 30 days. After this period, they were reassessed (OA-T30). The differences in the 1H-NMR metabolic SFs profiles between groups (OA-free, OA-T0 and OA-T30) were studied. The multivariate statistical analysis performed on SFs under different conditions (OA-T0 vs OA-T30 SFs; OA-T0 vs OA-free SFs and OA-T30 vs OA-free SFs) gave models with excellent goodness of fit and predictive parameters, revealed by a marked separation between groups. β-Hydroxybutyrate was identified as a characteristic compound of osteoarthritic joints, showing the important role of fat metabolism during OA. The absence of β-hydroxybutyrate after UC-II supplementation suggests the supplement’s effectiveness in rebalancing the metabolism inside the joint. The unexpectedly high level of lactate in the OA-free group suggests that lactate could not be considered a good marker for OA. These results prove that 1H-NMR-based metabolomic analysis is a valid tool to study and monitor OA and that UC-II improves clinical symptoms and the SF metabolic profile in OA dog

    Group-IV midinfrared plasmonics

    Get PDF
    The use of heavily doped semiconductors to achieve plasma frequencies in the mid-IR has been recently proposed as a promising way to obtain high-quality and tunable plasmonic materials. We introduce a plasmonic platform based on epitaxial n-type Ge grown on standard Si wafers by means of low-energy plasma-enhanced chemical vapor deposition. Due to the large carrier concentration achieved with P dopants and to the compatibility with the existing CMOS technology, SiGe plasmonics hold promises for mid-IR applications in optoelectronics, IR detection, sensing, and light harvesting. As a representative example, we show simulations of mid-IR plasmonic waveguides based on the experimentally retrieved dielectric constants of the grown materials

    Dermanyssus gallinae: the long journey of the poultry red mite to become a vector

    Get PDF
    : The possibility that Dermanyssus gallinae, the poultry red mite, could act as a vector of infectious disease-causing pathogens has always intrigued researchers and worried commercial chicken farmers, as has its ubiquitous distribution. For decades, studies have been carried out which suggest that there is an association between a wide range of pathogens and D. gallinae, with the transmission of some of these pathogens mediated by D. gallinae as vector. The latter include the avian pathogenic Escherichia coli (APEC), Salmonella enterica serovars Enteritidis and Gallinarum and influenza virus. Several approaches have been adopted to investigate the relationship between D. gallinae and pathogens. In this comprehensive review, we critically describe available strategies and methods currently available for conducting trials, as well as outcomes, analyzing their possible strengths and weaknesses, with the aim to provide researchers with useful tools for correctly approach the study of the vectorial role of D. gallinae

    Release of {DNA} from Dermanyssus gallinae during the Biting Process

    Get PDF
    : Dermanyssus gallinae is a hematophagous ectoparasitic mite that usually infests poultry, but is also known for occasionally attacking other animals and humans. It represents a major problem for poultry systems all over the world, with detrimental effects for both production and animal welfare. Despite the significance of D. gallinae, very little is known about the biting process to date. Therefore, this study has aimed to verify if mite DNA is injected into the host skin during the blood meal. Mite DNA has been detected by seminested PCR from infested chicken skin and quantified by real-time PCR. Furthermore, its localization within the host tissue has been checked by fluorescent in situ hybridization. Results showed that a very little amount of D. gallinae DNA can be released by mites, suggesting that the latter do not introduce whole or partially destroyed cells into the host, but rather it injects traces of nucleic acids, possibly together with merocrine secretions

    Release of DNA from Dermanyssus gallinae during the Biting Process

    Get PDF
    none10noDermanyssus gallinae is a hematophagous ectoparasitic mite that usually infests poultry, but is also known for occasionally attacking other animals and humans. It represents a major problem for poultry systems all over the world, with detrimental effects for both production and animal welfare. Despite the significance of D. gallinae, very little is known about the biting process to date. Therefore, this study has aimed to verify if mite DNA is injected into the host skin during the blood meal. Mite DNA has been detected by seminested PCR from infested chicken skin and quantified by real-time PCR. Furthermore, its localization within the host tissue has been checked by fluorescent in situ hybridization. Results showed that a very little amount of D. gallinae DNA can be released by mites, suggesting that the latter do not introduce whole or partially destroyed cells into the host, but rather it injects traces of nucleic acids, possibly together with merocrine secretions.Pugliese, Nicola; Raele, Donato Antonio; Schiavone, Antonella; Cafiero, Maria Assunta; Potenza, Lucia; Samarelli, Rossella; Circella, Elena; Vasco, Ilaria; Pennuzzi, Germana; Camarda, AntonioPugliese, Nicola; Raele, Donato Antonio; Schiavone, Antonella; Cafiero, Maria Assunta; Potenza, Lucia; Samarelli, Rossella; Circella, Elena; Vasco, Ilaria; Pennuzzi, Germana; Camarda, Antoni

    The use of silicon-germanium superlattices for thermoelectric devices and microfabricated generators

    Get PDF
    Low dimensional structures such as superlattices have the potential to improve the thermoelectric properties of materials by engineering the scattering of phonons to reduce the thermal conductivity and therefore improve the thermeoelectric performance. Here we demonstrate the reduction in thermal conductivity in Ge/SiGe superlattices using multiple barrier engineering to scatter acoustic phonons at the key wavelengths for thermal transport. The approach allows ZT to be increased in wide quantum well superlattices through the reduction of heterointerfaces which scatter both electrons and phonons
    corecore