1,675 research outputs found

    A comparative study of acid and alkaline aluminum extraction valorization procedure for aluminum saline slags

    Get PDF
    A management process for saline slags, one of the wastes from Secondary Aluminum Production, is proposed. The process begins with a grinding step, followed by washing with water, which removed the fluxing salts but provoking the hydrolysis of AlN, yielding Al(OH)3 and ammonia. Sieving of the solid generated an intermediate and a fine fraction. The first one was rich in metallic aluminum, and can also be returned to the Secondary Aluminum Production. The fine fraction was submitted to a extraction process in acid (HCl or HNO3) or alkaline (NaOH, KOH or CsOH) conditions, under reflux at 90 ºC, obtaining an Al(III) solution that can be used in the synthesis of aluminum-based solids. HCl (1-8 mol/L) and NaOH (1-4 mol/L) were used as reference solutions, HNO3, NaOH and KOH were used under specific conditions; the slag fraction:extraction solution solid:liquid ratio was also varied. The optimum extraction conditions were: extraction time 2 h, solid:liquid ratio 3:10, concentration 3 mol/L for the NaOH medium and 4 mol/L for the HCl medium. More than 30% of the aluminum present in the fraction smaller than 0.4 mm was recovered (the remaining aluminum was present as insoluble phases, corundum and spinel). Acid or basic media can be selected depending on the final use of Al(III) solutions, the basic medium leading to an Al(III) solution with a lower amount of impurities. The hazardousness of the solid obtained after the extraction process was greatly decreased, making possible the use of this solid residue in sectors such as construction.This work was supported by 'Memoria de D. Samuel Solórzano Barruso' Foundation (FS/11-2020). AJ thanks Universidad de Salamanca and Banco Santander for a predoctoral contract. AG is grateful for financial support from the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) through project PID2020-112656RB-C21. AG also thanks Santander Bank for funding via the Research Intensification Program

    Genomic analysis of eight native plasmids of the phytopathogen Pseudomonas syringae

    Get PDF
    Comunicación a conferenciaThe pPT23A family of plasmids (PFPs) appears to be indigenous to the plant pathogen Pseudomonas syringae and these plasmids are widely distributed and widely transferred among pathovars of P. syringae and related species. PFPs are sources of accessory genes for their hosts that can include genes important for virulence and epiphytic colonization of plant leaf surfaces. Further understanding of the evolution of the pPT23A plasmid family and the role of these plasmids in P. syringae biology and pathogenesis, requires the determination and analysis of additional complete, closed plasmid genome sequences. Therefore, our main objective was to obtain complete genome sequences from PFPs from three different P. syringae pathovars and perform a comparative genomic analysis. In this work plasmid DNA isolation, purification by CsCl-EtBr gradients, and sequencing using 454 platform, were used to obtain the complete sequence of P. syringae plasmids. Different bioinformatic tools were used to analyze the plasmid synteny, to identify virulence genes (i.e. type 3 effectors) and to unravel the evolutionary history of PFPs. Our sequence analysis revealed that PFPs from P. syringae encode suites of accessory genes that are selected at different levels (universal, interpathovar and intrapathovar). The conservation of type IVSS encoding conjugation functions also contributes to the distribution of these plasmids within P. syringae populations. Thus, this study contributes to unravel the genetic basis of the role of PFPs in different P. syringae lifestyles.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Gold Nucleation Inhibition by Halide Ions: a Basis for a Seed-Mediated Approach

    Get PDF
    In the present work, we examine the effect of halide ions on gold nucleation, a typical synthetic variable in the wet-chemical production of gold nanostructures. It was found that the homogeneous nucleation of gold by the chemical reduction of aqueous gold ions is kinetically quenched by an increase in the concentration of halide ions, and this effect grows stronger as the Au–halide complex stability increases. The nucleation quenching is not exclusively related to a specific reducing agent, but appears to be a more general behavior, and is affected by the pH of the media. While no nucleation is observed, Au(I) metastable species coexist together with the reducer, constituting metastable solutions. It is demonstrated that nucleation inhibition by halide ions can be employed as a basis for a seed-mediated approach to produce gold nanostructures. The metastable solutions are proved to function as growth baths, where Au(I) reduction is triggered on the surface of previously synthesized gold nanoparticles, driving their growth in the absence of secondary nucleation. It is also shown how, with this approach, the synthesis conditions can be rationally designed to obtain gold nanoparticles with the desired properties in a controlled and reproducible fashion.Fil: Moiraghi, Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Douglas Gallardo, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Macagno, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Perez, Manuel Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin

    Isolation, characterization and selection of bacterial isolates from a suppressive soil with beneficial traits to plants

    Get PDF
    Backgrounds This study focused on the characterization and selection of bacterial strains obtained from a suppressive soil displaying antifungal activity against the soilborne phytopathogenic fungi Rosellinia necatrix. Bacterial profile from this suppressive soil were first obtained by 16S rRNA gene sequencing, revealing a significant increase in the bacterial class Gammaproteobacteria, especially in some antagonistic representatives of Pseudomonas spp. Objectives To obtain and characterize a collection of 246 bacterial isolates obtained from this suppressive soil, in order to identify new strains with antifungal activity against fungal phytopathogens. Methods To obtain the bacterial collection, we performed an isolation on a selective medium for Pseudomonas-like microorganisms. Further characterization tests were used in order to analyse the bacterial collection, including identification of the general metabolic profile of glucose, the profiling of antifungals produced, including both the putative production of antifungal compounds and lytic exoenzymes, and the evaluation of traits related with beneficial effects on plants. Conclusions A final selection of representative strains resulted in antifungal isolates belonging to the genus Pseudomonas, but also some representatives of the genera Serratia and Stenotrophomonas. These selected strains were tested for plant protection by an in vivo experiment using avocado and wheat plants challenged by the pathogen R. necatrix, showing all of them an antifungal ability and plant disease protection. Pseudomonas-like strains isolated from suppressive soils constitute an excellent source for novel microbial biocontrol agents against soilborne fungal pathogens. This work was supported by grant AGL2014-52518-C2-1-R. Carmen Vida and Sandra Tienda are supported by a PhD fellowship from the FPI program of the Spanish Government.This work was supported by grant AGL2014-52518-C2-1-R. Carmen Vida and Sandra Tienda are supported by a PhD fellowship from the FPI program of the Spanish Government; Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Optimal electromagnetic energy extraction from transverse galloping

    Get PDF
    A fully coupled electro-fluid-elastic model for electromagnetic energy harvesting from Transverse Galloping is presented here. The model considers a one degree-of-freedom galloping oscillator where fluid forces are described resorting to quasi-steady conditions; the electromagnetic generator is modelled by an equivalent electrical circuit where power is dissipated at an electrical load resistance; the galloping oscillator and the electromagnetic model are coupled appropriately. Two different levels of simplification have been made depending on the comparison between the characteristic electrical and mechanical timescales. The effect of the electrical resistance load on the energy harvested is studied theoretically. For fixed geometry and mechanical parameters, it has been found that there exists an optimal electrical resistance load for each reduced velocity. On the practical side, this result can be helpful to design tracking-point strategies to maximize energy harvesting for variable flow velocity conditions

    Enhanced mechanical energy extraction from transverse galloping using a dual mass system

    Full text link
    This paper offers a theoretical study of energy extraction through transverse galloping using a dual-mass system. To this end, a two-degree-of-freedom model is developed where fluid forces on the galloping body are described resorting to quasi-steady hypothesis; the model is solved approximately by using the Harmonic Balance Method. Three possible configurations of the dual-mass system have been analyzed. Two of them show an improvement in the efficiency of energy extraction with respect to that of the single mass configuration when the mechanical properties of the dual-mass system are appropriately chosen. In addition, the dual-mass system promotes a broadening of the values of the incident flow velocities at which the efficiency is kept high

    Comparative genomic analysis of native pseudomonas syringae plasmids belonging to the ppt23 a family reveals their role in p. Syringae epiphytic and pathogenic lifestyles

    Get PDF
    Backgrounds The pPT23A family of plasmids (PFPs) appears to be indigenous to the plant pathogen Pseudomonas syringae and these plasmids are widely distributed and widely transferred among pathovars of P. syringae and related species. PFPs are sources of accessory genes for their hosts that can include genes important for virulence and epiphytic colonization of plant leaf surfaces. Objectives Further understanding of the evolution of the pPT23A plasmid family and the role of these plasmids in P. syringae biology and pathogenesis, requires the determination and analysis of additional complete, closed plasmid genome sequences. Therefore, our main objective was to obtain complete genome sequences of PFPs from three different P. syringae pathovars and perform a comprehensive comparative genomic analysis. Methods In this work plasmid DNA isolation, purification by CsCl-EtBr gradients, and sequencing using 454 platform, were carried out to obtain the complete sequence of P. syringae plasmids. Different bioinformatic tools were used to analyze the plasmid synteny, to identify virulence genes (i.e. type 3 effectors) and to unravel the evolutionary history of PFPs. Conclusions Our sequence analysis revealed that PFPs from P. syringae encode suites of accessory genes that are selected at different levels (universal, interpathovar and intrapathovar). The conservation of type IVSS encoding conjugation functions also contributes to the distribution of these plasmids within P. syringae populations. Thus, this study contributes to unravel the genetic bases of the role of PFPs in different P. syringae lifestyles. This work was supported by grants Proyecto de Excelencia, Junta de Andalucía (P07-AGR-02471; P12-AGR-1473) and by Michigan State University AgBioResearch.This work was supported by grants Proyecto de Excelencia, Junta de Andalucía (P07-AGR-02471; P12-AGR-1473) and by Michigan State University AgBioResearch; Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Analysis of the finite difference time domain technique to solve the Schrödinger equation for quantum devices

    Get PDF
    An extension of the finite difference time domain is applied to solve the Schrödinger equation. A systematic analysis of stability and convergence of this technique is carried out in this article. The numerical scheme used to solve the Schrödinger equation differs from the scheme found in electromagnetics. Also, the unit cell employed to model quantum devices is different from the Yee cell used by the electrical engineering community. A bound for the time step is derived to ensure stability. Several numerical experiments in quantum structures demonstrate the accuracy of a second order, comparable to the analysis of electromagnetic devices with the Yee cell.a!Electronic mail: [email protected] b!Electronic mail: [email protected] c!Electronic mail: [email protected] d!Electronic mail: [email protected]
    corecore