23,159 research outputs found

    Energy dependence of a vortex line length near a zigzag of pinning centers

    Full text link
    A vortex line, shaped by a zigzag of pinning centers, is described here through a three-dimensional unit cell containing two pinning centers positioned symmetrically with respect to its center. The unit cell is a cube of side L=12ξL=12\xi, the pinning centers are insulating spheres of radius RR, taken within the range 0.2ξ0.2\xi to 3.0ξ3.0\xi, ξ\xi being the coherence length. We calculate the free energy density of these systems in the framework of the Ginzburg-Landau theory.Comment: Submitted to Braz. Jour. Phys. (http://www.sbfisica.org.br/bjp) 11 pages, 6 figures, 1 table, LaTex 2

    Paramagnetic excited vortex states in superconductors

    Full text link
    We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The solution for any number of vortices in any cross section geometry can be read off from the Schwarz - Christoffel mapping. The method is based on the first order equations used by A. Abrikosov to discover vortices.Comment: 14 pages, 7 figure

    Vector form factor in K_l3 semileptonic decay with two flavors of dynamical domain-wall quarks

    Get PDF
    We calculate the vector form factor in K \to \pi l \nu semileptonic decays at zero momentum transfer f_+(0) from numerical simulations of two-flavor QCD on the lattice. Our simulations are carried out on 16^3 \times 32 at a lattice spacing of a \simeq 0.12 fm using a combination of the DBW2 gauge and the domain-wall quark actions, which possesses excellent chiral symmetry even at finite lattice spacings. The size of fifth dimension is set to L_s=12, which leads to a residual quark mass of a few MeV. Through a set of double ratios of correlation functions, the form factor calculated on the lattice is accurately interpolated to zero momentum transfer, and then is extrapolated to the physical quark mass. We obtain f_+(0)=0.968(9)(6), where the first error is statistical and the second is the systematic error due to the chiral extrapolation. Previous estimates based on a phenomenological model and chiral perturbation theory are consistent with our result. Combining with an average of the decay rate from recent experiments, our estimate of f_+(0) leads to the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V_{us}|=0.2245(27), which is consistent with CKM unitarity. These estimates of f_+(0) and |V_{us}| are subject to systematic uncertainties due to the finite lattice spacing and quenching of strange quarks, though nice consistency in f_+(0) with previous lattice calculations suggests that these errors are not large.Comment: 23 pages, 11 figures, 7 tables, RevTeX4; v3: one table added, results and conclusions unchanged, final version to appear in Phys.Rev.
    • …
    corecore