200 research outputs found

    Helium and multiple populations in the massive globular cluster NGC 6266 (M 62)

    Get PDF
    Recent studies suggest that the helium content of multiple stellar populations in globular clusters (GCs) is not uniform. The range of helium varies from cluster to cluster with more massive GCs having, preferentially, large helium spread. GCs with large helium variations also show extended-blue horizontal branch (HB). I exploit Hubble Space Telescope photometry to investigate multiple stellar populations in NGC 6266 and infer their relative helium abundance. This cluster is an ideal target to investigate the possible connection between helium, cluster mass, and HB morphology, as it exhibits an extended HB and is among the 10 more luminous GCs in the Milky Way. The analysis of colour–magnitude diagrams from multiwavelength photometry reveals that also NGC 6266, similarly to other massive GCs, hosts a double main sequence (MS), with the red and the blue component made up of the 79 ± 1 per cent and the 21 ± 1 per cent of stars, respectively. The red MS is consistent with a stellar population with primordial helium while the blue MS is highly helium-enhanced by ΔY = 0.08 ± 0.01. Furthermore, the red MS exhibits an intrinsic broadening that cannot be attributed to photometric errors only and is consistent with a spread in helium of ∼0.025 dex. The comparison between NGC 6266 and other GCs hosting helium-enriched stellar populations supports the presence of a correlation among helium variations, cluster mass, and HB extension

    The radial distributions of the two main-sequence components in the young massive star cluster NGC 1856

    Full text link
    The recent discovery of double main sequences in the young, massive star cluster NGC 1856 has caught significant attention. The observations can be explained by invoking two stellar generations with different ages and metallicities or by a single generation of stars composed of two populations characterized by different rotation rates. We analyzed the number ratios of stars belonging to both main-sequence components in NGC 1856 as a function of radius. We found that their number ratios remain approximately unchanged from the cluster's central region to its periphery, indicating that both components are homogeneously distributed in space. Through a comparison of the loci of the best-fitting isochrones with the ridge lines of both stellar components, we found that both multiple stellar populations and rapid stellar rotation can potentially explain the observed main-sequence bifurcation in NGC 1856. However, if NGC1856 were a young representative of the old globular clusters, then the multiple stellar populations model would not be able to explain the observed homogeneity in the spatial distributions of these two components, since all relevant scenarios would predict that the second stellar generation should be formed in a more compact configuration than that of the first stellar generation, while NGC 1856 is too young for both stellar generations to have been fully mixed dynamically. We speculate that the rapid stellar rotation scenario would be the favored explanation of the observed multiple stellar sequences in NGC 1856.Comment: 11 pages, 6 figures, ApJ accepte

    Discovery of Extended Main Sequence Turn-offs in Four Young Massive Clusters in the Magellanic Clouds

    Full text link
    An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color--magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turn-off regions in some YMCs. Here we present the ultraviolet--visual CMDs of four Large and Small Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turn-offs (MSTOs). The importance of age spreads and stellar rotation in reproducing the observations is investigated. The observed extended MSTOs cannot be explained by stellar rotation alone. Adopting an age spread of 35--50 Myr can alleviate this difficulty. We conclude that stars in these clusters are characterized by ranges in both their ages and rotation properties, but the origin of the age spread in these clusters remains unknown.Comment: 14 pages, 9 figures, ApJ accepte

    Updated properties of the old open cluster Melotte 66: Searching for multiple stellar populations

    Get PDF
    Multiple generations of stars are routinely encountered in globular clusters but no convincing evidence has been found in Galactic open clusters to date. In this paper we use new photometric and spectroscopic data to search for multiple stellar population signatures in the old, massive open cluster, Melotte~66. The cluster is known to have a red giant branch wide in color, which could be an indication of metallicity spread. Also the main sequence is wider than what is expected from photometric errors only. This evidence might be associated with either differential reddening or binaries. Both hypothesis have, however, to be evaluated in detail before recurring to the presence of multiple stellar populations. New, high-quality, CCD UBVI photometry have been acquired to this aim with high-resolution spectroscopy of seven clump stars, that are complemented with literature data. Our photometric study confirms that the width of the main sequence close to the turn off point is entirely accounted for by binary stars and differential reddening, with no need to advocate more sofisticated scenarios, such as metallicity spread or multiple main sequences. By constructing synthetic color-magnitude diagrams, we infer that the binary fraction has to be as large as 30% and their mass ratio in the range 0.6-1.0. As a by-product of our simulations, we provide new estimates of the cluster fundamental parameters. We measure a reddening E(B-V)=0.15±\pm0.02, and confirm the presence of a marginal differential reddening. The distance to the cluster is 4.7−0.1+0.24.7^{+0.2}_{-0.1} kpc and the age is 3.4±\pm0.3 Gyr, which is somewhat younger and better constrained than previous estimates. Our detailed abundance analysis reveals that, overall, Melotte~66 looks like a typical object of the old thin disk population.Comment: 14 pages, 18 eps figure, in press in Astronomy and Astrophysics. Abstract shortened to fit arXiv constraint

    Horizontal branch morphology and multiple stellar populations in the anomalous globular cluster M 22

    Get PDF
    M 22 is an anomalous globular cluster that hosts two groups of stars with different metallicity and s-element abundance. The star-to-star light-element variations in both groups, with the presence of individual Na-O and C-N anticorrelations, demonstratesWe are grateful to Peter Stetson for providing photometry of M22. A.P.M. acknowledges the financial support from the Australian Research Council through Discovery Project grant DP120100475. Support for this work has been provided by the IAC (grant 310394), and the Education and Science Ministry of Spain (grants AYA2007-3E3506 and AYA2010-16717)

    New insights into the formation of the blue main sequence in NGC 1850

    Full text link
    Recent discoveries of bimodal main sequences (MSs) associated with young clusters (with ages ≲1\lesssim 1 Gyr) in the Magellanic Clouds have drawn a lot of attention. One of the prevailing formation scenarios attributes these split MSs to a bimodal distribution in stellar rotation rates, with most stars belonging to a rapidly rotating population. In this scenario, only a small fraction of stars populating a secondary blue sequence are slowly or non-rotating stars. Here, we focus on the blue MS in the young cluster NGC 1850. We compare the cumulative number fraction of the observed blue-MS stars to that of the high-mass-ratio binary systems at different radii. The cumulative distributions of both populations exhibit a clear anti-correlation, characterized by a highly significant Pearson coefficient of −0.97-0.97. Our observations are consistent with the possibility that blue-MS stars are low-mass-ratio binaries, and therefore their dynamical disruption is still ongoing. High-mass-ratio binaries, on the other hand, are more centrally concentrated.Comment: 8 pages, 6 figures, accepted to Ap

    Stars caught in the braking stage in young Magellanic Clouds clusters

    Full text link
    The color-magnitude diagrams of many Magellanic Cloud clusters (with ages up to 2 billion years) display extended turnoff regions where the stars leave the main sequence, suggesting the presence of multiple stellar populations with ages which may differ even by hundreds million years (Mackey et al. 2008, Milone et al. 2009, Girardi et al. 2011). A strongly debated question is whether such an extended turnoff is instead due to populations with different stellar rotations (Girardi et al. 2011, Goudfrooij et al. 2011, Rubele et al. 2013, Li et al. 2014). The recent discovery of a `split' main sequence in some younger clusters (about 80--400Myr) added another piece to this puzzle. The blue (red) side of the main sequence is consistent with slowly (rapidly) rotating stellar models (D'Antona et al. 2015, Milone et al. 2016, Correnti et al. 2017, Milone et al 2016), but a complete theoretical characterization of the observed color-magnitude diagram appeared to require also an age spread (Correnti et al. 2017). We show here that, in three clusters so far analyzed, if the blue main sequence stars are interpreted with models that have been always slowly rotating, they must be about 30% younger than the rest of the cluster. If they are instead interpreted as stars initially rapidly rotating, but that have later slowed down, the age difference disappears, and "braking" also helps to explain the apparent age differences of the extended turnoff. The age spreads in Magellanic Cloud clusters are a manifestation of rotational stellar evolution. Observational tests are suggested.Comment: Accepted for publication and in state of Advance Online Publication (from 24 July 2017) on Nature Astronom

    Atmospheric Parameters and Metallicities for 2191 stars in the Globular Cluster M4

    Get PDF
    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the VLT FLAMES+GIRAFFE spectrograph at VLT. These medium resolution spectra cover by a small wavelength range, and often have very low signal-to-noise ratios. We attacked this dataset by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 Red Giant Branch stars with V≤14.7V \leq 14.7 we obtain a nearly constant metallicity, =−1.07 = -1.07 (σ\sigma = 0.02). No difference in the metallicity at the level of 0.01 dex0.01 ~\textrm{dex} is observed between the two RGB sequences identified by \cite{Monelli:2013us}. For 1869 Subgiant and Main Sequence Stars V>14.7V > 14.7 we obtain =−1.16 = -1.16 (σ\sigma = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than two thousand stars, using a dataset that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions.Comment: 17 pages, 20 figures, 3 tables. Accepted for publication in The Astronomical Journa

    First evidence of multiple populations along the AGB from Str\"omgren photometry

    Full text link
    Spectroscopic studies have demonstrated that nearly all Galactic globular clusters (GCs) harbour multiple stellar populations with different chemical compositions. Moreover, colour-magnitude diagrams based exclusively on Str\"omgrem photometry have allowed us to identify and characterise multiple populations along the RGB of a large number of clusters. In this paper we show for the first time that Str\"omgren photometry is also very effcient at identifying multiple populations along the AGB, and demonstrate that the AGB of M3, M92, NGC362, NGC1851, and NGC6752 are not consistent with a single stellar population. We also provide a catalogue of RGB and AGB stars photometrically identified in these clusters for further spectroscopic follow-up studies.We combined photometry and elemental abundances from the literature for RGB and AGB stars in NGC6752 where the presence of multiple populations along the AGB has been widely debated. We find that, while the MS, SGB, and RGB host three stellar populations with different helium and light element abundances, only two populations of AGB stars are present in the cluster. These results are consistent with standard evolutionary theory.Comment: 9 pages, 3 figures, 1 table in the main article, 3 tables in the appendix of which 2 tables containing coordinates and photometry of photometrically identified RGB and AGB star
    • …
    corecore