3 research outputs found

    Induction of the Erythroid Differentiation of K562 Cells Is Coupled with Changes in the Inter-Chromosomal Contacts of rDNA Clusters

    No full text
    The expression of clusters of rDNA genes influences pluripotency; however, the underlying mechanisms are not yet known. These clusters shape inter-chromosomal contacts with numerous genes controlling differentiation in human and Drosophila cells. This suggests a possible role of these contacts in the formation of 3D chromosomal structures and the regulation of gene expression in development. However, it has not yet been demonstrated whether inter-chromosomal rDNA contacts are changed during differentiation. In this study, we used human leukemia K562 cells and induced their erythroid differentiation in order to study both the changes in rDNA contacts and the expression of genes. We observed that approximately 200 sets of rDNA-contacting genes are co-expressed in different combinations in both untreated and differentiated K562 cells. rDNA contacts are changed during differentiation and coupled with the upregulation of genes whose products are mainly located in the nucleus and are highly associated with DNA- and RNA-binding, along with the downregulation of genes whose products mainly reside in the cytoplasm or intra- or extracellular vesicles. The most downregulated gene is ID3, which is known as an inhibitor of differentiation, and thus should be switched off to allow for differentiation. Our data suggest that the differentiation of K562 cells leads to alterations in the inter-chromosomal contacts of rDNA clusters and 3D structures in particular chromosomal regions as well as to changes in the expression of genes located in the corresponding chromosomal domains. We conclude that approximately half of the rDNA-contacting genes are co-expressed in human cells and that rDNA clusters are involved in the global regulation of gene expression

    Genes Possessing the Most Frequent DNA DSBs Are Highly Associated with Development and Cancers, and Essentially Overlap with the rDNA-Contacting Genes

    No full text
    Double-strand DNA breakes (DSBs) are the most deleterious and widespread examples of DNA damage. They inevitably originate from endogenous mechanisms in the course of transcription, replication, and recombination, as well as from different exogenous factors. If not properly repaired, DSBs result in cell death or diseases. Genome-wide analysis of DSBs has revealed the numerous endogenous DSBs in human chromosomes. However, until now, it has not been clear what kind of genes are preferentially subjected to breakage. We performed a genetic and epigenetic analysis of the most frequent DSBs in HEK293T cells. Here, we show that they predominantly occur in the active genes controlling differentiation, development, and morphogenesis. These genes are highly associated with cancers and other diseases. About one-third of the genes possessing frequent DSBs correspond to rDNA-contacting genes. Our data suggest that a specific set of active genes controlling morphogenesis are the main targets of DNA breakage in human cells, although there is a specific set of silent genes controlling metabolism that also are enriched in DSBs. We detected this enrichment by different activators and repressors of transcription at DSB target sites, as well breakage at promoters. We propose that both active transcription and silencing of genes give a propensity for DNA breakage. These results have implications for medicine and gene therapy
    corecore