114 research outputs found

    Andic soils and catastrophic mudflows in Italy: morphological and hydropedological evidences

    Get PDF
    In Italy rapid landslides are the most frequently occurring natural disasters and, after earthquakes, cause the highest number of victims. In this contribution we attempt to prove that there exist a tight connection between the presence of a specific soil type, namely andic soils, and the occurrence of the main catastrophic mudflows and debris flows occurred in Italy in the last decades. The study was performed by means of an integrated pedological and hydrological analysis on the detachment crowns of some of the most important catastrophic mudflows and debris flows occurred in Italy in the last decades and involving/evolving surface soils. The results at both regional (Campania) and National (Italy) scale clearly show that despite the large variability of the environmental settings of the studied sites there are indeed some striking homogeneous soil features in the detachment crowns including (i) soil morphology, (ii) andic features ranging from high to moderate, (iii) high water retention throughout a large range of pressure heads. Results seem to reveal clear cause-effect evidences between andic soils and the investigated catastrophic mudflows/debrisflows; this must be related to the unique physical properties of these soils inducing high landslide vulnerability

    Differential Expression of Kisspeptin System and Kisspeptin Receptor Trafficking during Spermatozoa Transit in the Epididymis

    Get PDF
    The hypothalamus–pituitary–testis axis controls the production of spermatozoa, and the kisspeptin system, comprising Kiss1 and Kiss1 receptor (Kiss1R), is the main central gatekeeper. The activity of the kisspeptin system also occurs in testis and spermatozoa, but currently the need of peripheral kisspeptin to produce gametes is not fully understood. Hence, we characterized kisspeptin system in rat spermatozoa and epididymis caput and cauda and analyzed the possible presence of Kiss1 in the epididymal fluid. The presence of Kiss1 and Kiss1R in spermatozoa collected from epididymis caput and cauda was evaluated by Western blot; significant high Kiss1 levels in the caput (p < 0.001 vs. cauda) and constant levels of Kiss1R proteins were observed. Immunofluorescence analysis revealed that the localization of Kiss1R in sperm head shifts from the posterior region in the epididymis caput to perforatorium in the epididymis cauda. In spermatozoa-free epididymis, Western blot revealed higher expression of Kiss1 and Kiss1R in caput (p < 0.05 vs. cauda). Moreover, immunohistochemistry revealed that Kiss1 and Kiss1R proteins were mainly localized in the secretory epithelial cell types and in contractile myoid cells, respectively. Finally, both dot blot and Elisa revealed the presence of Kiss1 in the epididymal fluid collected from epididymis cauda and caput, indicating that rat epididymis and spermatozoa possess a complete kisspeptin system. In conclusion, we reported for the first time in rodents Kiss1R trafficking in spermatozoa during the epididymis transit and Kiss1 measure in the epididymal fluid, thus suggesting a possible role for the system in spermatozoa maturation and storage within the epididymis

    Molecular determinants for the activating/blocking actions of the 2H-1,4-benzoxazine derivatives, a class of potassium channel modulators targeting the skeletal muscle KATP channels

    Get PDF
    The 2H-1,4-benzoxazine derivatives are modulators of the skeletal muscle ATP-sensitive-K+ channels (KATP), activating it in the presence of ATP but inhibiting it in the absence of nucleotide. To investigate the molecular determinants for the activating/blocking actions of these compounds, novel molecules with different alkyl or aryl-alkyl substitutes at position 2 of the 1,4-benzoxazine ring were prepared. The effects of the lengthening of the alkyl chain and of branched substitutes, as well as of the introduction of aliphatic/aromatic rings on the activity of the molecules, were investigated on the skeletal muscle KATP channels of the rat, in excised-patch experiments, in the presence or absence of internal ATP (10 -4 M). In the presence of ATP, the 2-n-hexyl analog was the most potent activator (DE50 = 1.08 × 10-10 M), whereas the 2-phenylethyl was not effective. The rank order of efficacy of the openers was 2-n-hexyl ≥2-cyclohexylmethyl &gt;2-isopropyl = 2-n-butyl = 2-phenyl ≥ 2-benzyl = 2-isobutyl analogs. In the absence of ATP, the 2-phenyl analog was the most potent inhibitor (IC50 = 2.5 × 10-11 M); the rank order of efficacy of the blockers was 2-phenyl ≥ 2-n-hexyl &gt; 2-n-butyl &gt; 2-cyclohexylmethyl, whereas the 2-phenylethyl, 2-benzyl, and 2-isobutyl 1,4-benzoxazine analogs were not effective; the 2-isopropyl analog activated the KATP channel even in the absence of nucleotide. Therefore, distinct molecular determinants for the activating or blocking actions for these compounds can be found. For example, the replacement of the linear with the branched alkyl substitutes at the position 2 of the 1,4-benzoxazine nucleus determines the molecular switch from blockers to openers. These compounds were 100-fold more potent and effective as openers than other KCO against the muscle KATP channels. Copyright © 2008 The American Society for Pharmacology and Experimental Therapeutics

    In vivo longitudinal study of rodent skeletal muscle atrophy using ultrasonography

    Get PDF
    Muscle atrophy is a widespread ill condition occurring in many diseases, which can reduce quality of life and increase morbidity and mortality. We developed a new method using non-invasive ultrasonography to measure soleus and gastrocnemius lateralis muscle atrophy in the hindlimb-unloaded rat, a well-Accepted model of muscle disuse. Soleus and gastrocnemius volumes were calculated using the conventional truncated-cone method and a newly-designed sinusoidal method. For Soleus muscle, the ultrasonographic volume determined in vivo with either method was linearly correlated to the volume determined ex-vivo from excised muscles as muscle weight-To-density ratio. For both soleus and gastrocnemius muscles, a strong linear correlation was obtained between the ultrasonographic volume and the muscle fiber cross-sectional area determined ex-vivo on muscle cryosections. Thus ultrasonography allowed the longitudinal in vivo evaluation of muscle atrophy progression during hindlimb unloading. This study validates ultrasonography as a powerful method for the evaluation of rodent muscle atrophy in vivo, which would prove useful in disease models and therapeutic trials

    Structural nucleotide analogs are potent activators/inhibitors of pancreatic beta-cell KATP channels: an emerging mechanism supporting their use as anti-diabetic drugs.

    Get PDF
    The 2H-1,4-benzoxazine derivatives are novel drugs structurally similar to nucleotides; however, their actions on the pancreatic beta-cell ATP-sensitive-K(+)(KATP) channel and on glucose disposal are unknown. Therefore, the effects of the linear/branched alkyl substituents and the aliphatic/aromatic rings at position 2 of the 2H-1,4-benzoxazine nucleus on the activity of these molecules against the pancreatic beta-cell KATP channel and the Kir6.2C36 subunit were investigated using a patch-clamp technique. The effects of these compounds on glucose disposal that followed glucose loading by i.p. GTT and on fasted glycemia were investigated in normal mice. The 2-n-hexyl analog blocked the KATP(IC50=10.1x10(-9)M) and Kir6.2C36(IC50=9.6x10(-9)M) channels which induced depolarization. In contrast, the 2-phenyl analog was a potent opener(DE50=0.04x10(-9)M), which induced hyperpolarization. The ranked order of the potency/efficacy of the analog openers was 2-phenyl&gt;2-benzyl&gt;2-cyclohexylmethyl. The 2-phenylethyl and 2-isopropyl analogs were not effective as blockers/openers. The 2-n-hexyl (2-10 mg kg(-1)) and 2-phenyl analogs (2-30 mg kg(-1)) reduced and enhanced the glucose AUC curves, respectively, following the glucose loading in mice. These compounds did not affect the fasted glycemia as is observed with glibenclamide. The linear alkyl chain and the aromatic ring at position 2 of the 1,4-benzoxazine nucleus are the determinants, which respectively confer the KATP channel blocking action with glucose lowering effects and the opening action with increased glucose levels. The opening/blocking actions of these compounds mimic those that were observed with ATP and ADP. The results support the use of these compounds as novel anti-diabetic drugs

    Whole-Genome Sequencing Characterization of Virulence Profiles of Listeria monocytogenes Food and Human Isolates and In Vitro Adhesion/Invasion Assessment

    Get PDF
    none13sìListeria monocytogenes (Lm) is the causative agent of human listeriosis. Lm strains have different virulence potential. For this reason, we preliminarily characterised via Whole-Genome Sequencing (WGS) some Lm strains for their key genomic features and virulence-associated determinants, assigning the clonal complex (CC). Moreover, the ability of the same strains to adhere to and invade human colon carcinoma cell line Caco-2, evaluating the possible correspondence with their genetic virulence profile, was also assessed. The clinical strains typed belonged to clonal complex (CC)1, CC31, and CC101 and showed a very low invasiveness. The Lm strains isolated from food were assigned to CC1, CC7, CC9, and CC121. All CC1 carried the hypervirulence pathogenicity island LIPI-3 in addition to LIPI-1. Premature stop codons in the inlA gene were found only in Lm of food origin belonging to CC9 and CC121. The presence of LIPI2_inlII was observed in all the CCs except CC1. The CC7 strain, belonging to an epidemic cluster, also carried the internalin genes inlG and inlL and showed the highest level of invasion. In contrast, the human CC31 strain lacked the lapB and vip genes and presented the lowest level of invasiveness. In Lm, the genetic determinants of hypo- or hypervirulence are not necessarily predictive of a cell adhesion and/or invasion ability in vitro. Moreover, since listeriosis results from the interplay between host and virulence features of the pathogen, even hypovirulent clones are able to cause infection in immunocompromised people.openGiuditta Fiorella Schiavano * , Collins Njie Ateba , Annalisa Petruzzelli , Veronica Mele , Giulia Amagliani , Fabrizia Guidi , Mauro De Santi , Francesco Pomilio , Giuliana Blasi , Antonietta Gattuso , Stefania Di Lullo , Elena Rocchegiani, Giorgio BrandiSchiavano, GIUDITTA FIORELLA; Njie Ateba, Collins; Petruzzelli, Annalisa; Mele, Veronica; Amagliani, Giulia; Guidi, Fabrizia; DE SANTI, Mauro; Pomilio, Francesco; Blasi, Giuliana; Gattuso, Antonietta; Di Lullo, Stefania; Rocchegiani, Elena; Brandi, Giorgi

    ATP Sensitive Potassium Channels in the Skeletal Muscle Function: Involvement of the KCNJ11(Kir6.2) Gene in the Determination of Mechanical Warner Bratzer Shear Force

    Get PDF
    The ATP-sensitive K-channels (KATP) are distributed in the tissues coupling metabolism with K ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1), KCNJ11 (Kir6.2), ABCC8 (SUR1), and ABCC9 (SUR2) genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibers is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical, and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review
    • …
    corecore